Access Tutorial 14: Data Access Ob

14.1 Introduction: What is the DAO
hierarchy?

The core of Microsoft Access and an important part
of Visual Basic (the stand-alone application develop-
ment environment) is the Microsoft Jet database
engine. The relational DBMS functionality of Access
comes from the Jet engine; Access itself merely pro-
vides a convenient interface to the database engine.

Because the application environment and the data-
base engine are implemented as separate compo-
nents, it is possible to upgrade or improve Jet
without altering the interface aspects of Access, and
vice-versa.

Microsoft takes this component-based approach fur-
ther in that the interface to the Jet engine consists of
a hierarchy of components (or “objects”) called Data
Access Objects (DAO). The advantage of DAO is

© Michael Brydon (brydon@unixg.ubc.ca)
Last update: 25-Aug-1997

jects

that its modularity supports easier development and
maintenance of applications.

The disadvantage is that is you have to understand a
large part of the hierarchy before you can write your
first line of useful code. This makes using VBA diffi-
cult for beginners (even for those with considerable
experience writing programs in BASIC or other
3GLs").

14.1.1 DAO basics

Although you probably do not know it, you already
have some familiarity with the DAO hierarchy. For
example, you know that a Database object (such as
univO_v x.mdb) contains other objects such as
tables (TableDef objects) and queries (QueryDef
objects). Moving down the hierarchy, you know that
TableDef objects contain Field objects.

* Third-generation programming languages.

1of22

M Home | [4Previous | [Next P |

14. Data Access Objects

Unfortunately, the DAO hierarchy is somewhat more
complex than this. However, at this level, it is suffi-
cient to recognize three things about DAO:

1. Each object that you create is an instance of a
class of similar objects (e.g., univ0_v x is a par-
ticular instance of the class of Database objects).

2. Each object may contain one or more Collec-
tions of objects. Collections simply keep all
objects of a similar type or function under one
umbrella. For example, Field objects such as
DeptCode and CrsNum are accessible through a
Collection called Fields).

3. Objects have properties and methods (see
below).

14.1.2 Properties and methods

You should already be familiar with the concept of
object properties from the tutorial on form design
(Tutorial 6). The idea is much the same in DAO:

Introduction: What is the DAO hierarchy?

every object has a number of properties that can be
either observed (read-only properties) or set (read/
write properties). For example, each TableDef (table
definition) object has a read-only property called
DateCreated and a read/write property called Name.
To access an object’s properties in VBA, you nor-
mally use the <object name>.<property

name> syntax, e.g.,

Employees.DateCreated

@

To avoid confusion between a property called
DateCreated and a field (defined by you)
called DateCreated , Access version 7.0
and above require that you use a bang (!)
instead of a period to indicate a field name or
some other object created by you as a devel-
oper. For example:
Employees!DateCreated.Value

identifies the Value property of the DateCre-

20f22

M Home | [4Previous | [Next P |

14. Data Access Objects

ated field (assuming one exists) in the
Employees table.

Methods are actions or behaviors that can be
applied to objects of a particular class. In a sense,
they are like predefined functions that only work in
the context of one type of object. For example, all
Field objects have a method called FieldSize that
returns the size of the field. To invoke a object’s
methods, you use the

<object name>.<method> [parameter 1

..., parameter nl syntax, e.g.,:
DeptCode.FieldSize

@ A reasonable question at this point might be:
Isn’'t FieldSize a property of a field, not a
method? The answer to this is that the imple-
mentation of DAO is somewhat inconsistent in
this respect. The best policy is to look at the

Introduction: What is the DAO hierarchy?

object summaries in the on-line help if you are
unsure.

A more obvious example of a method is the Cre-
ateField method of TableDef objects, e.g.:
Employees.CreateField(“Phone”,

dbText, 25)

This creates a field called Phone, of type dbText (a
constant used to represent text), with a length of 25
characters.

14.1.3 Engines, workspaces, etc.

A confusing aspect of the DAO hierarchy is that you
cannot simply refer to objects and their properties as
done in the examples above. As Figure 14.1 illus-
trates, you must include the entire path through the
hierarchy in order to avoid any ambiguity between,
say, the DeptCode field in the Courses TableDef
object and the DeptCode field in the gryCourses
QueryDef object.

30f22

M Home | [4Previous | [Next P |

14. Data Access Objects

Introduction: What is the DAO hierarchy?

FIGURE 14.1: Navigating the DAO hierarchy.

To access a particular field, you il DBENgine @ By creating a database object at
have to understand the structure the start of your VBA
of the DAO hierarchy. programs, you bypass the top
Workspaces part of the hierarchy.
[
[|
Databases other classes...
[[|
TableDefs QueryDefs Recordsets other classes...
| |
[| [|
Courses other tables... gryCourses other queries...
Fields Fields
\L DeptCode \L DeptCode Legend
TableDefs object or collection
— Indexes — Indexes
Courses instance

|ﬁHome | I4Previous | 4of22 [Next P |

14. Data Access Objects

Working down through the hierarchy is especially
confusing since the first two levels (DBEngine and
Workspaces) are essentially abstractions that have
no physical manifestations in the Access environ-
ment. The easiest way around this is to create a
Database object that refers to the currently open
database (e.g., univ0_v x.mdb) and start from the
database level when working down the hierarchy.

Section 14.3.1 illustrates this process for version 2.0.

14.2 Learning objectives
O What is the DAO hierarchy?

O What are objects? What are properties and
methods?

O How do | create a reference to the current
database object? Why is this important?

0 What is a recordset object?

O How do | search a recordset?

Learning objectives

14.3 Tutorial exercises

14.3.1 Setting up a database object

In this section you will write VBA code that creates a
pointer to the currently open database.

» Create a new module called basDAOTest (see
Section 12.3.3 for information on creating a new
module).

» Create a new subroutine called PrintRecords

* Define the subroutine as follows:

Dim dbCurr As DATABASE
Set dbCurr =
DBENgine.Workspaces(0).Databases(0)
Debug.Print doCurr.Name
* Run the procedure, as shown in Figure 14.2.

Let us examine these three statements one by one.

1. Dim dbCurr As DATABASE
This statement declares the variable dbCurr as
an object of type Database. For complex objects

| #ArHome | [{Previous |

50f22

| Next D |

14. Data Access Objects

A

To
@

FIGURE 14.2: C

Tutorial exercises

reate a pointer to the current database.

- bhasDAOTest : Module
Dhject: I(General)

| 4

Declare and set the point
(dbCurr) to the current
database.

Add a line to print the nam(
of the database.

Sub PrintRecords()

¥ Dim dbCurr As DATABASE
™ Sot dbCurr = DBEngine . Workspaces(0) .Databases(8)
P Debug.Print dbCurr.Name

B Debug Window
End Sub

I<Ready>

Although you can use the
Print statement by itself
in the debug window, you
must invoke thd°rint
method of the Debug object
from a module—hence the
Debug.Print syntax.

PrintRecords
E:\uniuﬂ_u?-mmi\ C Run the procedure to
ensure it works.

@ Version 7.0 and above support a less
cumbersome way referring to the current
database—th€urrentDb function:
Set dbCurr = CurrentDb

|ﬁHome | I4dPrevious | 6of22 [Next P |

14. Data Access Objects

(in contrast to simple data types like integer,
string, etc.) Access does not allocate memory
space for a whole database object. Instead, it
allocates space for a pointer to a database
object. Once the pointer is created, you must set
it to point to an object of the declared type (the
object may exist already or you may have to cre-
ate it).

2. Set dbCurr = DBEngine.Work-
spaces(0).Databases(0)
(Note: this should be typed on one line). In this
statement, the variable dbCurr (a pointer to a
Database object) is set to point to the first Data-
base in the first Workspace of the only Database
Engine. Since the numbering of objects within a
collection starts at zero, Databases(0) indi-
cates the first Database object. Note that the first
Database object in the Databases collection is
always the currently open one.

Tutorial exercises

Do not worry if you are not completely sure
what is going on at this point. As long as you
understand that you can type the above two
lines to create a pointer to your database,
then you are in good shape.

3. Debug.Print dbCurr.Name
This statement prints the name of the object to
which dbCurr refers.

14.3.2 Creating a Recordset object

As its name implies, a TableDef object does not con-
tain any data; instead, it merely defines the structure
of a table. When you view a table in design mode,
you are seeing the elements of the TableDef object.
When you view a table in datasheet mode, in con-
trast, you are seeing the contents of Recordset
object associated with the table.

7 of 22

M Home | [4Previous | [Next P |

14. Data Access Objects

To access the data in a table using VBA, you have to
invoke the OpenRecordset method of the Data-
base object. Since most of the processing you do in
VBA involves data access, familiarity with Recordset
objects is essential. In this section, you will create a
Recordset object based on the Courses table.
 Delete the Debug.Print dbCurr.Name line
from your program.
» Add the following:
Dim rsCourses As Recordset
Set rsCourses =
dbCurr.OpenRecordset(“Courses”)
The first line declares a pointer (rsCourses)to a
Recordset object. The second line does two things:

1. Invokes the OpenRecordset method of dbCurr
to create a Recordset object based on the table
named “Courses” . (i.e., the name of the table is
a parameter for the OpenRecordset method).

Tutorial exercises

2. Sets rsCourses to point to the newly created
recordset.

Note that this Set statement is different than the pre-
vious one since the OpenRecordset method
results in a new object being created (dbCurr points
to an existing database—the one you opened when
you started Access).

14.3.3 Using a Recordset object

In this section, you will use some of the properties
and methods of a Recordset object to print its con-
tents.

» Add the following to PrintRecords

Do Until rsCourses.EOF

Debug.Print rsCourses!DeptCode & “”
& rsCourses!CrsNum

rsCourses.MoveNext
Loop
* This code is explained in Figure 14.3.

|ﬁHome | I4dPrevious | 8of22 [Next P |

14. Data Access Objects

Tutorial exercises

FIGURE 14.3: Create a program to loop through the records in a Recordset object.

- basDAOTest : Module

Ohject: I(General)

b EOFis a property of the recordset.
=] Pes [P tis true if the record counter has

Loop

End Sub

Sub PrintRecords()

B Debug Window

Dim dbCurr As DATABASE

Set dbCurr = DBEngine.lWorkspaces(0).Datab

Dim rsCourses As Recordset

Set rsCourses = dbCurr.OpenRec

Do Until rsCourses.EOF
Debug.Print rsCourses!DeptCode & " "
rsCourses . MoueNext

|<F’ieady>

COMM
COMM
COMM
MATH
MATH
CRUWR

PrintRecords

290
291
351
4ot
303
496

reached the “end of file” (EOF)
marker and false otherwise.

The exclamation mark (!) indicates

et("Courses") thatDeptCode is a user-defined

field (rather than a method or
property) of the recordset object.

& rsCoursestCrsHum

@ Since the Value property is the default property

of a field, you do not have to use the
<recordset>!<field>.Value syntax.

TheMoveNext method moves the
record counter to the next record in
the recordset.

|ﬁHome | I4dPrevious | 9of22 [Next P |

14. Data Access Objects

14.3.4 Using the FindFirst method

In this section, you will use the FindFirst ~ method
of Recordset objects to lookup a specific value in a
table.
» Create a new function called MyLookUp() using
the following declaration:
Function MyLookUp(strField As
String, strTable As String,
strWhere As String) As String
An example of how you would use this function is to
return the Title of a course from the Courses
table with a particular DeptCode and CrsNum. In
other words, MyLookUp() is essentially an SQL
statement without the SELECT FROMand WHERE
clauses.

The parameters of the function are used to specify
the name of the table (a string), the name of the field
(a string) from which you want the value, and a

Tutorial exercises

WHERIEondition (a string) that ensures that only one
record is found.

For example, to get the Title of COMM 351 from
the Courses table, you would provide MyLookUp()
with the following parameters:

1. “Title” — a string containing the name of the
field from which we want to return a value;

2. “Course” — a string containing the name of the
source table; and,

3. “DeptCode = ‘COMM’ AND CrsNum =
‘335" — a string that contains the entire
WHERE clause for the search.

Note that both single and double quotation
marks must be used to signify a string within a
string. The use of quotation marks in this
manner is consistent with standard practice in
English. For example, the sentence:

“He shouted, ‘Wait for me.” illus-

10 of 22

M Home | [4Previous | [Next P |

14. Data Access Objects

trates the use of single quotes within double
quotes.

» Define the MyLookUp() function as follows:

Dim dbCurr As DATABASE
Set dbCurr = CurrentDb

If you are using version 2.0, you cannot use
the CurrentDb method to return a pointer to
the current database. You must use long form
(i.e., Set dbCurr = DBENngine...)

Dim rsRecords As Recordset

Set rsRecords =
dbCurr.OpenRecordset(strTable,
dbOpenDynaset)

In version 2.0, the name of some of the pre-
defined constants are different. As such, you
must use DB_OPEN_DYNASKE&ther than
dbOpenDynaset to specify the type of

Tutorial exercises

Recordset object to be opened (the Find-
First method only works with “dynaset” type
recordsets, hence the need to include the
additional parameter in this segment of code).

rsRecords.FindFirst strWWhere

VBA uses a rather unique convention to
determine whether to enclose the arguments
of a function, subroutine, or method in paren-
theses: if the procedure returns a value,
enclose the parameters in parentheses; oth-
erwise, use no parentheses. For example, in
the line above, strWhere is a parameter of
the FindFirst ~ method (which does not
return a value).

If Not rsRecords.NoMatch() Then
MyLookUp =
rsRecords.Fields(strField).Value

|ﬁHome | IdPrevious | 11of22 | Nextp |

14. Data Access Objects

Else
MyLookUp = *"
End If
» Execute the function with the following statement
(see Figure 14.4):
? MyLookUp(“Title”, “Courses”,
“DeptCode = 'COMM' AND CrsNum =
'351"™)
As it turns out, what you have implemented exists
already in Access in the form of a predefined func-
tion called DLookUp() .
» Execute the DLookUp() function by calling it in
the same manner in which you called
MyLookUp() .

14.3.5 The DLookUp() function

The DLookUp() function is the “tool of last resort” in
Access. Although you normally use queries and
recordsets to provide you with the information you

Tutorial exercises

need in your application, it is occasionally necessary
to perform a stand-alone query—that is, to use the
DLookUp() function to retrieve a value from a table
or query.

When using DLookUp() for the first few times, the
syntax of the function calls may seem intimidating.
But all you have to remember is the meaning of a
handful of constructs that you have already used.
These constructs are summarized below:

* Functions — DLookUp() is a function that
returns a value. It can be used in the exact same
manner as other functions, e.g.,

X = DLookUp(...) is similar to
X = cos(2*pi)

» Round brackets ()— In Access, round brackets
have their usual meaning when grouping
together operations, e.g., 3*(5+1) . Round
brackets are also used to enclose the arguments
of function calls, e.g., x = cos(2*pi)

|ﬁHome | I4dPrevious | 120f22 | Nextp |

14. Data Access Objects Tutorial exercises

FIGURE 14.4: MyLookUp() : A function to find a value in a table.

- basDAOTest : Module

Ohject: I(General) j Froc: IMyLuukUp

Function MyLookUp(strField As String, strTable As String, strllhere As String) As String

Dim dbCurr As DATABASE TheNoMatch() method returns True if the
Set dbCurr = CurrentDb FindFirst method finds no matching records,
and False otherwise.

Dim rsRecords As Recordset
Set rsRecords = dbCurr.OpenRecordset rTable, dbOpenDynaset)

rsRecords .FindFirst strllherg SincestrField contains the name of a valid

If Not rsRecords.NoMatch() Then 44— Field object Title) in the Fields collection,
MyLookUp = rsRecords.Fields(strField).Ualue this notation returns the value Bifle

Else
MyLookUp = ™"

End If 8 Debug Window

? MyLookUp("Title","Courses"”, "DeptCode = "COMM' AND CrsHum = "351'") &
Financial Accounting

<Ready>
End Function I - _:Il

LM Home | [4Previous | 130f2 | Nextp |

14. Data Access Objects

e Square brackets [] — Square brackets are not
a universally defined programming construct like
round brackets. As such, square brackets have a
particular meaning in Access/VBA and this
meaning is specific to Microsoft products. Simply
put, square brackets are used to signify the name
of a field, table, or other object in the DAO hierar-
chy—they have no other meaning. Square brack-
ets are mandatory when the object names
contain spaces, but optional otherwise. For
example, [Forms]![frmCourses]![Dept-

Code] is identical to Forms!frm-
Courses!DeptCode

* Quotation marks “” — Double quotation marks
are used to distinguish literal strings from names
of variables, fields, etc. For example,

X = “COMM”means that the variable x is equal
to the string of characters COMM. In contrast,

Tutorial exercises

x = COMNMmeans that the variable x is equal to
the value of the variable COMM

Single quotation marks ‘'’ — Single quotation
marks have only one purpose: to replace normal
quotation marks when two sets of quotation
marks are nested. For example, the expression
x =*“[ProductID] =‘123™ means that the
variable x is equal to the string ProductID =
“123”. In other words, when the expression is
evaluated, the single quotes are replaced with
double quotes. If you attempt to nest two sets of
double quotation marks (e.g., x = “[Produc-

tID] = “123™) the meaning is ambiguous
and Access returns an error.

The Ampersand & — The ampersand is the con-
catenation operator in Access/VBA and is unique
to Microsoft products. The concatenation opera-
tor joins two strings of text together into one
string of text. For example,

|ﬁHome | I4dPrevious | 140f22 | Nextp |

14. Data Access Objects

X = “one” & “ two” means that the variable
x is equal to the string one_two.

If you understand these constructs at this point, then
understanding the DLookUp() function is just a mat-
ter of putting the pieces together one by one.

14.3.5.1 Using DLookUp()

The DLookUp() function is extremely useful for per-
forming lookups when no relationship exists between
the tables of interest. In this section, you are going to
use the DLookUp() function to lookup the course
name associated with each section in the Sections
table. Although this can be done much easier using a
join query, this exercise illustrates the use of vari-
ables in function calls.
» Create a new query called gryLookUpTest
based on the Sections table.
* Project the DeptCode , CrsNum, and Section
fields.

in queries

Tutorial exercises

* Create a calculated field called Title
following expression (see Figure 14.5):
Title: DLookUp(“Title”, “Courses”,

“DeptCode =& [DeptCode] & “ AND
CrsNum =" & [CrsNum] & “")

14.3.5.2 Understanding the WHERE clause

The first two parameters of the DLookUp() are
straightforward: they give the name of the field and
the table containing the information of interest. How-
ever, the third argument (i.e., the WHERElause) is
more complex and requires closer examination.

using the

At its core, this WHERIElause is similar to the one
you created in Section 5.3.2 in that it contains two
criteria. However, there are two important differ-
ences:

1. Since itis a DLookUp() parameter, the entire
clause must be enclosed within quotation marks.
This means single and double quotes-within-
guotes must be used.

15 of 22

M Home | [4Previous | [Next P |

14. Data Access Objects Tutorial exercises

FIGURE 14.5: Create a query that uses DLookUp() .

a2 Create a query based on thections ‘b Use theDLookUp() function to get the
table only (do not includ€ourses). correct course title for each section.
A
B2 Zoom E

. —

Title: DLookUp("Title","Courses","DeptCode = " & [DeptCode] & " X Ok
AMD CrsMum =" & [CrsNum] & "™ |

= gryLookUpTest: 5§
Cancel

*

DeptCode
CrsMNum
Section
Session

! qryLookUpTest : Select Query

CatalogNum =} Department code|Course humber| Section Title
o || COMM 351 0oz Financial Accounting
. || COMM 351 003 Financial Accounting
Field: [DeptCode (|| COMM 439 001 Advanced Topics in Information Systems
Table: |Sections i |CRWR 202 001 Creative Forms
Slalit CRWR 202 801 Creative Forms
— | [crRWR 202 302 Creative Forms
CRWR 496 001 Poetry Tutorial

|ﬁHome | IdPrevious | 160f22 | Nextp |

14. Data Access Objects

2. It contains variable (as opposed to literal) criteria.
For example, [DeptCode] is used instead of
“COMM’ This makes the value returned by the
function call dependent on the current value of
the DeptCode field.

In order to get a better feel for syntax of the function
call, do the following exercises (see Figure 14.6):

Switch to the debug window and define two string
variables (see Section 12.3.1 for more information
on using the debug window):

strDeptCode = “COMM”

strCrsNum = “351”
These two variables will take the place the field val-
ues while you are in the debug window.

» Write the WHERIElause you require without the
variables first. This provides you with a template
for inserting the variables.

 Assign the WHERElause to a string variable
called strWhere (this makes it easier to test).

Discussion

» Use strWhere in a DLookUp() call.

14.4 Discussion

14.4.1 VBA versus SQL

The PrintRecords procedure you created in
Section 14.3.3 is interesting since it does essentially
the same thing as a select query: it displays a set of
records.

You could extend the functionality of the Print-
Records subroutine by adding an argument and an
IF-THEN condition. For example:
Sub PrintRecords(strDeptCode as
String)
Do Until rsCourses.EOF
If rsCourses!DeptCode = strDeptCode
Then

Debug.Print rsCourses!DeptCode & “”
& rsCourses!CrsNum

17 of 22

M Home | [4Previous | [Next P |

14. Data Access Objects Discussion

FIGURE 14.6: Examine the syntax of the WHERE clause.

a2 Create string variables that refer to valid ‘b Write theWHERIElause using literal
values ofDeptCode andCrsNum. criteria first to get a sense of what is

required.
B Debug Window

|<Ready>
Use the variables in the WHERE

strDeptCode = "COMM" 4— / C (lause and assign the expression to a

strershum = 3517 string variable calledtrWhere

"COMM® AND CrsNum = *351°"

"DeptCode
" & strDeptCode & ™" AND CrsNum = '" & strCrsNum & """

strilhere = "DeptCode
4 ? strlWhere
DeptCode = "COMM’® AND CrsNum = "351°

d To save typing, usstrWhere as the

? DLookUp("Title", "Courses", strllhere) - thilrld parameter of thBLookUp()
call.

Financial Accounting

@ When replacing a literal string with a variable, you
have to stop the quotation marks, insert the variable
(with ampersands on either side) and restart the
guotation marks. This procedure is evident when the
literal and variable version are compared to each other.

|ﬁHome | I4dPrevious | 180of22 | Nextp |

14. Data Access Objects

End If
rsCourses.MoveNext
Loop
rsCourses.Close

End Sub

This subroutine takes a value for DeptCode as an
argument and only prints the courses in that particu-
lar department. It is equivalent to the following SQL
command:

SELECT DeptCode, CourseNum FROM

Courses WHERE DeptCode =
strDeptCode

14.4.2 Procedural versus Declarative

The difference between extracting records with a
guery language and extracting records with a pro-
gramming language is that the former approach is
declarative while the latter is procedural .

Discussion

SQL and QBE are declarative languages because
you (as a programmer) need only tell the computer
what you want done, not how to do it. In contrast,
VBA is a procedural language since you must tell the
computer exactly how to extract the records of inter-
est.

Although procedural languages are, in general, more
flexible than their declarative counterparts, they rely
a great deal on knowledge of the underlying struc-
ture of the data. As a result, procedural languages
tend to be inappropriate for end-user development
(hence the ubiquity of declarative languages such as
SQL in business environments).

|ﬁHome | IdPrevious | 190f22 | Nextp |

14. Data Access Objects

14.5 Application to the assignment

14.5.1 Using a separate table to store
system parameters

When you calculated the tax for the order in

Section 9.5, you “hard-coded” the tax rate into the
form. If the tax rate changes, you have to go through
all the forms that contain a tax calculation, find the
hard-coded value, and change it. Obviously, a better
approach is to store the tax rate information in a
table and use the value from the table in all form-
based calculations.

Strictly speaking, the tax rate for each product is a
property of the product and should be stored in the
Products table. However, in the wholesaling envi-
ronment used for the assignment, the assumption is
made that all products are taxed at the same rate.

Application to the assignment

As a result, it is possible to cheat a little bit and cre-
ate a stand-alone table (e.g., SystemVariables)
that contains a single record:

VariableName Value

GST 0.07

Of course, other system-wide variables could be
contained in this table, but one is enough for our pur-
poses. The important thing about the SystemVari-
ables table is that it has absolutely no relationship
with any other table. As such, you must use a
DLookUp() to access this information.

* Create atable that contains information about the
tax rate.

» Replace the hard-coded tax rate information in
your application with references to the value in
the table (i.e., use a DLookUp() in your tax cal-
culations). Although the SystemVariables
table only contains one record at this point, you

|ﬁHome | IdPrevious | 200f22 | Nextp |

14. Data Access Objects

should use an appropriate WHERElause to
ensure that the value for GST is returned (if no
WHEREIlause is provided, DLookUp() returns
the first value in the table).

The use of a table such as SystemVari-

A ables contradicts the principles of relational
database design (we are creating an attribute
without an entity). However, trade-offs
between theoretical elegance and practicality
are common in any development project.

14.5.2 Determining outstanding
backorders

An good example in your assignment of a situation
requiring use of the DLookUp() is determining the
backordered quantity of a particular item for a partic-
ular customer. You need this quantity in order to cal-
culate the number of each item to ship.

Application to the assignment

The reason you must use a DLookUp() to get this
information is that there is no relationship between
the OrderDetails and BackOrders tables.

Any relationship that you manage to create
between OrderDetails and BackOrders
will be nonsensical and result in a non-updat-
able recordset.

* In the query underlying your OrderDetails
subform, create a calculated field called QtyOn-
BackOrder to determine the number of items on
backorder for each item added to the order. This
calculated field will use the DLookUp() function.

There are two differences between this DLookUp()
and the one you did in Section 14.3.5.1

1. Both of the variables used in the function (e.qg.,
CustID and ProductiD) are not in the query.
As such, you will have to use a join to bring the

|ﬁHome | IdPrevious | 21of22 | Nextp |

14. Data Access Objects

missing information into the query.

2. ProductlD is a text field and the criteria of text
fields must be enclosed in quotation marks, e.g.:
ProductID = 123"

However, CustID is a numeric field and the crite-

ria for numeric fields is not enclosed in quotations
marks, e.g.:
CustiD =4

Not every combination of CustID and Pro-
ductlD will have an outstanding backorder.
When a matching records is not found, the
DLookUp() function returns a special value:
Null . The important thing to remember is
that Null plus or minus anything equals

Null . This has implications for your “quantity
to ship” calculation.

» Create a second calculated field in your query to
convert any Null s in the first calculated field to

Application to the assignment

zero. To do this, use the iif() and IsNull()

functions, e.qg.:

QtyOnBackOrderNoNull:
iif(IsNull([QtyOnBackOrder]),0,[Qty
OnBackOrder])

* Use this “clean” version in your calculations and
on your form.

It is possible to combine these two calculated
fields into a one-step calculation, e.g.:
iif(IsNull(DLookUp(...)),0,

DLookUp(...)) .

The problem with this approach is that the
DLookUp() function is called twice: once to
test the conditional part of the immediate if
statement and a second time to provide the
“false” part of the statement. If the Back-
Orders table is very large, this can result in
an unacceptable delay when displaying data
in the form.

2 of 22

M Home | [4Previous | [Next P |

	14.1 Introduction: What is the DAO hierarchy?
	14.1.1 DAO basics
	14.1.2 Properties and methods
	14.1.3 Engines, workspaces, etc.

	14.2 Learning objectives
	14.3 Tutorial exercises
	14.3.1 Setting up a database object
	14.3.2 Creating a Recordset object
	14.3.3 Using a Recordset object
	14.3.4 Using the FindFirst method
	14.3.5 The DLookUp() function

	14.4 Discussion
	14.4.1 VBA versus SQL
	14.4.2 Procedural versus Declarative

	14.5 Application to the assignment
	14.5.1 Using a separate table to store system para...
	14.5.2 Determining outstanding backorders

