Access Tutorial 13: Event-Driven Pro grammin g
Using Macros

13.1 Introduction: What is event-
driven programming?

In conventional programming, the sequence of oper-
ations for an application is determined by a central
controlling program (e.g., a main procedure). In
event-driven programming, the sequence of opera-
tions for an application is determined by the user’s
interaction with the application’s interface (forms,
menus, buttons, etc.).

For example, rather than having a main procedure
that executes an order entry module followed by a
data verification module followed by an inventory
update module, an event-driven application remains
in the background until certain events happen: when
a value in a field is modified, a small data verification
program is executed; when the user indicates that

© Michael Brydon (brydon@unixg.ubc.ca)
Last update: 25-Aug-1997

the order entry is complete, the inventory update
module is executed, and so on.

Event-driven programming, graphical user interfaces
(GUIs), and object-orientation are all related since
forms (like those created in Tutorial 6) and the
graphical interface objects on the forms serve as the
skeleton for the entire application. To create an
event-driven application, the programmer creates
small programs and attaches them to events associ-
ated with objects, as shown in Figure 13.1. In this
way, the behavior of the application is determined by
the interaction of a number of small manageable pro-
grams rather than one large program.

1of26

M Home | [4Previous | [Next P |

13. Event-Driven Programming Using Macros Introduction: What is event-driven programming?

FIGURE 13.1: In a trigger, a procedure is 13.1.1 Triggers
attached to an event. Since events on forms “trigger” actions, event/proce-

dure combinations are sometimes called triggers .

An object, such as the .
/ interface object \ button created in For example, the action query you attached to a but-

cmdUpdateCredits Section 11.3.5, has ton in Section 11.3.5 is an example of a simple, one-
: predefined properties and 4ction trigger. However, since an action query can
properties events. For a button, the 99 ' . n query can
Caption most important eventis ©ONly perform one type of action, and since you typi-
Enabled On Click. cally have a number of actions that need to be per-

formed, macros or Visual Basic procedures are

events procedure typically used to implement a triggers in Access.

On Click =———
On Got Focus

- J 13.1.2 The Access macro language

As you discovered in Tutorial 12, writing simple VBA
A procedure (such as an programs is not difficult, but it is tedious and error-
action query, macro, or VBA prone. Furthermore, as you will see in Tutorial 14,
function or subroutine) can be VBA programming becomes much more difficult
attached to an event. When . : :
the event occurs, the when you have to refer to objects using the naming
procedure is executed. conventions of the database object hierarchy. As a

consequence, even experienced Access program-

|ﬁHome | I4dPrevious | 20f26 [Next P |

13. Event-Driven Programming Using Macros

mers often turn to the Access macro language to
implement basic triggers.

The macro language itself consists of 40 or so com-
mands. Although it is essentially a procedural lan-
guage (like VBA), the commands are relatively high
level and easy to understand. In addition, the macro
editor simplifies the specification of the action argu-
ments (parameters).

13.1.3 The trigger design cycle

To create a trigger, you need to answer two ques-
tions:

1. What has to happen?
2. When should it happen?

Once you have answered the first question (“what”),
you can create a macro (or VBA procedure) to exe-
cute the necessary steps. Once you know the
answer to the second question (“when”), you can

Learning objectives

attach the procedure to the correct event of the cor-
rect object.

Selecting the correct object and the correct

A event for a trigger is often the most difficult
part of creating an event-driven application. It
is best to think about this carefully before you
get too caught up in implementing the proce-
dure.

13.2 Learning objectives

O What is event-driven programming? What is a
trigger?

How do | design a trigger?
How does the macro editor in Access work?

How do | attach a macro to an event?

o aaa

What is the SetValue action? How is it used?

|ﬁHome | I4Previous | 30f26 [Next P |

13. Event-Driven Programming Using Macros

O How do | make the execution of particular
macro actions conditional?

O What is a switchboard and how do | create
one for my application?

O How to | make things happen when the
application is opened?

O What are the advantages and disadvantages
of event-driven programming?

13.3 Tutorial exercises

In this tutorial, you will build a number of very simple
triggers using Access macros. These triggers, by
themselves, are not particularly useful and are
intended for illustrative purposes only.

Tutorial exercises

13.3.1 The basics of the macro editor

In this section, you are going to eliminate the warn-
ing messages that precede the trigger you created
Section 11.3.5.

As such, the answer to the “what” question is the fol-

lowing:

1. Turn off the warnings so the dialog boxes do not
pop up when the action query is executed;

2. Run the action query; and,

3. Turn the warnings back on (it is generally good
programming practice to return the environment
to its original state).

Since a number of things have to happen, you can-
not rely on an action query by itself. You can, how-
ever, execute a macro that executes several actions
including one or more action queries.

|ﬁHome | I4Previous | 40f26 [Next P |

13. Event-Driven Programming Using Macros

» Select the Macros tab from the database window
and press New. This brings up the macro editor
shown in Figure 13.2.

« Add the three commands as shown in
Figure 13.3. Note that the OpenQuery command
is used to run the action query.

« Save the macro as mcrUpdateCredits
close it.

and

13.3.2 Attaching the macro to the event

The answer to the “when” question is: When the
cmdUpdateCredits button is pressed. Since you
already created the button in Section 11.3.5, all you
need to do is modify its On Click property to point the
mcrUpdateCredits macro.
* Open frmDepartments in design mode.
* Bring up the property sheet for the button and
scroll down until you find the On Click property,
as shown in Figure 13.4.

Tutorial exercises

FIGURE 13.4: Bring up the On Click property for

¥ Command Button: cmdUpdateCredits E3

the button.
FDrmatl Data | Ewent | Other
ControlTip Text.

| = |
Update Credits Ef
. Help ContextId 0

Tag................

OnClick............ [Ewvent Frocedure]

On Mouse Down . ..
On Mouse Mowve . ..
On Mouse Up
On Key Down ... /.
OnkeylUp.. .../ ..
On Key Press /... .

All |

=]

@

|ﬁHome | 14Previous |

50f26

The button wizard attached a
VBA procedure to the button.

| Next D |

13. Event-Driven Programming Using Macros Tutorial exercises

FIGURE 13.2: The macro editor.

Macro actions can be selected from a list. The

SetWarnings command is used to turn the warning In the comment column, you can

messages (e.g., before you run an action query) on and off. document your macros as required
- & Macrol : Macro

Multiple commands are Action Camment -

executed from top to P [Setiamings =] —

bottom.

Most actions have one or -

more arguments that

determine the specific Action Arguments
behavior of the action. In Warnings On MNo
this case. the Turns all system MEssages on or

K) . off. Prevents modal warnings from
SetWarnlngs _actlon IS stopping the macra (although
set to turn warnings off. errar messages and dialogs that

require user input still appear).
- This has the same effect as

The area on the right - pressing Enter in each message
displays information about b (ypically an OK or Yes).
the action. Fress F1 for help on this action.

|ﬁHome | I4dPrevious | 60f26 [Next P |

13. Event-Driven Programming Using Macros Tutorial exercises

FIGURE 13.3: Create a macro that answers the “what” question.

Add the three commands to
= 8

the macro. # mcrUpdateCredits : Macro S[=] B3
Action
Setviarnings
DpenCuery
Set'amings
=l
‘b The arguments for the two Action Arguments
SetWarnings actions _
are straigh?forward For the Cuebhame pantpdateCredits =l
: Wi Datasheet
OpenQuery command, Dt Mo S ot » t
electthe name of the query to
you can select the qu_ery to open. The list shows all queries in
open (OI’ rL_m) from a list. the current database. Reguired
Since this is an action argument. Press F1 for help on
query, the second and third e EHgUmEIiL
argu_ments are not
applicable.

|ﬁHome | I4Previous | 70f26 [Next P |

13. Event-Driven Programming Using Macros Tutorial exercises

 Press the builder button (=) beside the existing
procedure and look at the VBA subroutine cre-
ated by the button wizard. Most of this code is for

FIGURE 13.5: Select the macro to attach to the
On Click property.

error handling. ¥ Command Button: cmdUpdateCredits
FDrmatl Data | Event | Other All |
Unlike the stand-along VBA modules you cre- Shortcut Menu Bar . =]
@ ControlTip Tesxt
ated in Tutorial 12, this module (collection of Help Cantext e 0
. . : . - :
functions and subroutines) is embedded in : Press the arrow to get a list
the frmDepartments form. c a of available macros

On Got Focus ...
* Since you are going to replace this code with a SHE?SLFDCUS ------ -
- . . nick. L
macro, you do not want it taking up space in your On Dbl Click [Event Procedure]
database file. Highlight the text in the subroutine On Mouse Down . S EICOEENS
. . On Mouse Mowve
and delete it. When you close the module win- On Mause Up .
dow, you will see the reference to the “event pro- On Key Down . _
OnkeylUp. ;I

cedure” is gone.

* Bring up the list of choice for the On Click prop-
erty as shown in Figure 13.5. Select mcrUp-
dateCredits

|ﬁHome | I4dPrevious | 80f26 [Next P |

13. Event-Driven Programming Using Macros

» Switch to form view and press the button. Since
no warnings appear, you may want to press the
button a few times (you can always use your roll-
back query to reset the credits to their original
values).

13.3.3 Creating a check box to display
update status information

Since the warning boxes have been disabled for the
update credits trigger, it may be useful to keep track
of whether courses in a particular department have
already been updated.

To do this, you can add a field to the Departments
table to store this “update status” information.
 Edit the Departments table and add a Yes/No
field called CrUpdated .

If you have an open query or form based on
the Departments table, you will not be able

Tutorial exercises

to modify the structure of the table until the
guery or form is closed.

» Set the Caption property to Credits updated?
and the Default property to No as shown in
Figure 13.6.

Changes made to a table do not automatically carry
over to forms already based on that table. As such,

you must manually add the new field to the depart-

ments form.

* Open frmDepartments in design mode.

» Make sure the toolbox and field list are visible.
Notice that the new field (CrUpdated) shows up
in the field list.

» Use the same technique for creating combo
boxes to create a bound check box control for the
yes/no field. This is shown in Figure 13.7.

|ﬁHome | I4Previous | 90f26 [Next P |

13. Event-Driven Programming Using Macros

FIGURE 13.6: Add a field to the Departments
table to record the status of updates.

Departments : Table

| Field Mame Data Type
% [DeptCode Text
DeptMame Text
Building Text
CrlJpdated Yes/Mo

General | Lookup |

Farmat Yes Mo

Captian Credits updated?
Default Yalue Mo

Yalidation Rule

“alidation Text

Reguired Mo

Indexed Mo

13.3.4 The SetValue command

So far, you have used two commands in the Access
macro language: SetWarnings and OpenQuery. In

Tutorial exercises

this section, you are going to use one of the most
useful commands—SetValue —to automatically
change the value of the CrUpdated check box.

* Openyour mcrUpdateCredits ~ macro in design
mode and add a SetValue command to change
the CrUpdated check box to Yes (or True , if
you prefer). This is shown in Figure 13.8.

» Save the macro and press the button on the form.
Notice that the value of the check box changes,
reminding you not to update the courses for a
particular department more than once.

13.3.5 Creating conditional macros

Rather than relying on the user not to run the update
when the check box is checked, you may use a con-
ditional macro to prevent an update when the
check box is checked.

|ﬁHome | I4dPrevious | 100f26 | Nextp |

13. Event-Driven Programming Using Macros Tutorial exercises

FIGURE 13.7: Add a check box control to keep track of the update status.

2 Select the check box tool
D|-|-1'|'2'I'3'I'4'I'5'I'5'I'?'I's'l'g'l'm'l fromthetoolbox.
: ¥ Form Header
- Ta...
- |Depfnmentcnde|lD?pth ITIT
1 IDcpu I.IIII:II{II_lIIIl:”DEptNamE el deate A ahl
_ = — =
- @dmg IFIullldmu vl pdated? =1
]
- ||DeptCode — A check box is a control
Depthlame TE[EE that can be bound to fields
L i .0 of the yes/no data type.
NI= When the box is checked,
True is stored in the
table; when the box is
‘b Drag theCrUpdated field from the uncheckedFalse is
field list to the detail section. stored.

LM Home | [4Previous | 110f26 | NextP |

13. Event-Driven Programming Using Macros Tutorial exercises

FIGURE 13.8: Add a SetValue command to set the value of the update status field when the
update is compete.

= 1 Pick theSetValue command
from the list or simply type it in.

mcrUpdateCredits : Macro

Action Expression Builder ||
gelwgmmgs Forms[frrmDepartments][Crlpdated] =
penQuery
Setwarnings ﬂl
Setval
efv'alue ;I Undlo |
+ -/ *|ﬂ = > < <>| And Or MNot L|ke| Paste | Help
[term [Crpdated]
Expression Yes

<Formz» Biildin
DeptCode Label DeptCode
DeptCDde NManttlama

. 1 L& Loaded Forms DeptName LE The Expression argument is the
‘b Theltem argument is the thing you: [T D\E'ptHﬁm\ value you want th&etValue
want theSetValue action to set theiForms Building Lahe action to set the value of titem

- Buuildi . :

valueI of. You can udse the builder OB o dLIangdateCl to. Type inYes (no quotation

simply type inCrUpdate . ictions «| |crupdated marks are required sindees is
_ 1 | |Lebeld recognized as a constant in this

context).

|ﬁHome | IdPrevious | 120f26 | Nextp |

13. Event-Driven Programming Using Macros Tutorial exercises

» Select View > Conditions to display the condi- 13.3.5.1 The simplest conditional macro
tions column in the macro editor as shown in If there is an expression in the condition column of a
Figure 13.9. macro, the action in that row will execute if the condi-
FIGURE 13.9: Display the macro editors tion is true. If the condition is not true, the action will
condition column be skipped.

* Fill in the condition column as shown in

Eile Edit [NEC Inser Bun Tools Window Help Figure 13.10. Precede the actions you want to
=Tl <] =] I=E execute if the check box is checked with [CrUp-
dated] . Precede the actions you do not want to
execute with Not [CrUpdated]

@, Microsoft Access

kacro MNames
¥ Conditions

3 ml:rUp UL LIS UID Ly

Copdition Action
twarnings @ Since CrUpdated is a Boolean (yes/no) vari-
Openluery .
SetAamings able, you do not need to write [CrUpdated]
Sefvalue = True or [CrUpdated] = False . The
Select\/lew > Conditions or press the true and false parts are implied. However, if a
“conditions” button on the tool bar. non-Boolean data type is used in the expres-

sion, a comparison operator must be included
(e.g., [DeptCode] = “COMM” | [Cred-
its] <3 , etc.)

LM Home | [4Previous | 130f26 | NextP |

13. Event-Driven Programming Using Macros Tutorial exercises

FIGURE 13.10: Create a conditional macro to control which actions execute.

= 1 The expressiohlot [CrUpdated] # mcrUpdateCredits : Macro = B3
is true if theCrUpdated check box is Candition _Actian Comment -
not checked. Use this expression in Egi Eggpgzzgiﬂ ge‘;’:gﬂ‘gs [
front of the actions you want to executg—, -~ [CrUE iated] SEWamm%S
in this situation. Not[CrUpdated] Setvalue
P | [Crlpdated] MsgBox
‘b The expressiofCrUpdated] is Action Arguments =
true if theCrUpdated check box is
checked. In this situation, you shoul Message Courses for this department have alre Enter the toxt
indicate to the user that the update is = B==p ves of the
not being performed. E"pe Mone message 1o
itle display in the
C TheMsgBox action displays a e Proe
standard Windows message box. You F1 for help
can set the message and other message an this
box features in the arguments section. argurment

|ﬁHome | I4dPrevious | 140f26 | Nextp |

13. Event-Driven Programming Using Macros

» Switch to the form and test the macro by pressing
the button. If the CrUpdated check box is
checked, you should get a message similar to
that shown in Figure 13.11.

FIGURE 13.11: The action query is not executed
and the message box appears instead.

H Departments

4 Department code ICOMM

Department name ICDmmerce and Business Administr

Building IANGU v Credits updated?

Microsoft Access

Courses for this deparment hawve already been updated.

Tutorial exercises

13.3.5.2 Refining the conditions

The macro shown in Figure 13.10 can be improved
by using an ellipsis (...) instead of repeating the
same condition in line after line. In this section, you
will simplify your conditional macro slightly.

Move the message box action and condition to the
top of the list of actions by dragging its record selec-
tor (grey box on the left).
* Insert a new row immediately following the mes-
sage and add a StopMacro action, as shown in
Figure 13.12.

The macro in Figure 13.12 executes as follows: If
CrUpdate is true (i.e., the box is checked), the
MsgBox action executes. Since the next line has an
ellipsis in the condition column, the condition contin-
ues to apply. However, that action on the ellipsis line
is StopMacro , and thus the macro ends without
executing the next four lines.

|ﬁHome | I4dPrevious | 150f26 | Nextp |

13. Event-Driven Programming Using Macros Tutorial exercises

If the CrUpdate box is not checked, the first two
lines are ignored (i.e., the lines with the false condi-
tion and the ellipsis) and the update proceeds.

FIGURE 13.12: Rearrange the macro actions and
insert a new row.

Click the record selector and drag the
a .

message box action to the top of the list. 13.3.5.3 Creating a group of named macros

It is possible to store a number of related macros

mcrUpdeteCredits : Macro

"o Conditian e C Add an ellipsis together in one macro “module”. These group mac-
1 (...)and a ros have two advantages:
B Openauery S(t:%glg/l.acro 1. Modular macros can be created — instead of
Setwarnings . . .
— Setvalue having a large macro with many conditions and
: # mcrUpdateCredits : Macro branches, you can create a small macro that call
— Cangifian | other small macros.
o [Crlpgited] StoaMaco = 2. Similar macros can be grouped together ~ — for
gz‘;’:g&f‘gs example, you could keep all you Departments -
SetwWamnings related macros or search-related macros in a
/ sefvalue macro group.

nght -click where you would like In this section, we will focus on the first advantage.

to insert a new row and select . :
Insert Row from the popup menu. Select View > Macro Names to display the macro
name column.

|ﬁHome | I4dPrevious | 160f26 | Nextp |

13. Event-Driven Programming Using Macros

* Perform the steps in Figure 13.13 to modularize
your macro.

» Change the macro referred to in the On Click
property of the cmdUpdateCredits button from
mcrUpdateCredits to
mcrUpdateCredits.CheckStatus

* Test the operation of the button.

13.3.6 Creating switchboards

One of the simplest (but most useful) triggers is an
OpenForm command attached to a button on a form
consisting exclusively of buttons.

This type of “switchboard” (as shown in
Figure 13.14) can provide the user with a means of
navigating the application.
» Create an unbound form as shown in
Figure 13.15.

Tutorial exercises

* Remove the scroll bars, navigation buttons, and
record selectors from the form using the form’s
property sheet.

» Save the form as swbMain .

There are two ways to add button-based triggers to a
form:

1. Turn the button wizard off, create the button, and
attach an macro containing the appropriate
action (or actions).

2. Turn the button wizard on and use the wizard to
select from a list of common actions (the wizard
writes a VBA procedure for you).

Since the wizard can only attach one action to
@ a button (such as opening a form or running
an action query) it is less flexible than a
macro. However, once you are more comfort-
able with VBA, there is nothing to stop you

17 of 26

M Home | [4Previous | [Next P |

13. Event-Driven Programming Using Macros Tutorial exercises

FIGURE 13.13: Use named macros to modularize the macro.

a2 SelectView > Macro Names to display @ A macro executes until it encounters a
the macro names column. blank line. Use blank lines to separate the
named macros within a group.

Create a named macro ca_llled
Chec_k_Status _that contains the Macro Name Condition Action
conditional logic for the procedure. \l»_ CheckStatus QCrupdated] RunMacro

mcrUpdateCredits : Macro

Mot [Crldpdated] Runbdacro

Updated MsgBox

Create two other macradpdated and A .
C NotUpdated that correspond to the Not Jpdated giﬁgﬂ;ﬁs
logic in theCheckStatus macro. Setiamings

Sefvalue

Action Arguments

TheRunMacro action executes a
particular macro. Select the macro to
execute from a list in the arguments pane-
Note the naming convention for macros
within a macro group. mcrlpdateCredits. NotlUpdated

tacra Name |
Repeat Count mcrlJpdateCredits
eat Expressian mcrlpdateCredits. CheckStatus

mcrlJpdate Credits Updated

|ﬁHome | I4dPrevious | 180f26 | Nextp |

13. Event-Driven Programming Using Macros Tutorial exercises

FIGURE 13.14: A switchboard interface to the application.

The command buttons are placed on an Although it is not shown here, switchboards can
unbound form. Note the absence of scroll bars. call other switchboards, allowing you to add a
record selectors, or navigation buttons. hierarchical structure to your application.
\ & Main Switchboard =] E3
. University Infarmation System
I | ‘View Departments: Rollback Credit Update
’ View Courses View Sections
Gratuitous clip art can be used to Shortcut keys are include on each
clutter your forms and reduce the button to allow the user to navigate
application’s overall performance. the application with keystrokes.

|ﬁHome | I4dPrevious | 190f26 | Nextp |

13. Event-Driven Programming Using Macros Tutorial exercises

New Form 21Xl FIGURE 13.15: Create an unbound form as the
Dasian view switchboard background.
— Form Wizard
ﬁL.’.. AutoForm: Colurmnar
AutaForm: Takular
: - AutoForm: Datasheet SelectDesign View (no wizard) and
e WHRGHHSING - chart wizord 2 jcave the “rgecord so(urce” box)em t
& wizard. PivotTable \Wizard pty.
The result is a blank form on which
you can build your switchboard.
Choose the table or gueny where I y
the ohject's data comes from:

Ok | Cancel |

[][Detai

|ﬁHome | I4dPrevious | 200f26 | Nextp |

13. Event-Driven Programming Using Macros

from editing the VBA modules created by the
wizard to add additional functionality.

13.3.6.1 Using a macro and manually-created
buttons

» Ensure the wizard is turned off and use the but-
ton tool to create a button.

* Modify the properties of the button as shown in
Figure 13.16.

» Create a macro called
mcrSwitchboard.OpenDept and use the
OpenForm command to open the form frmDe-
partments

« Attach the macro to the On Click event of the
cmdDepartments button.

* Test the button.

13.3.6.2 Using the button wizard
« Turn the button wizard back on and create a new
button.

Tutorial exercises

* Follow the directions provided by the wizard to
set the action for the button (i.e., open the frm-
Courses form) as shown in Figure 13.17.

» Change the button’s font and resize it as
required.

You can standardize the size of your form

@ objects by selecting more than one and using
Format > Size > to Tallest and to Widest com-
mands. Similarly, you can select more than
one object and use the “multiple selection”
property sheet to set the properties all at
once.

13.3.7 Using an autoexec macro

If you use the name autoexec to save a macro (in

lieu of the normal mcr<name> convention), Access

will execute the macro actions when the database is
opened. Consequently, auto-execute macros are

21 of 26

M Home | [4Previous | [Next P |

13. Event-Driven Programming Using Macros

Tutorial exercises

FIGURE 13.16: Create a button and modify its appearance.

A

B swbMain : Form

Use the button tool to create a button
(ensure the wizard activated).

To

|:||'I'1'I'2'I'4'

Give the button a meaningful name
(e.g.cmdDepartments) and caption
(including a shortcut key.).

= = e e
B o Al ey
_ = e I * Dotall et at
- : CDmrﬂandD E] :I = ET | | Mame cmdDeptantments -
! \ 9| - | _l Caption............ “iew 8&Depanments
. =8 | BB] View P!dure {none)
2 | 2 - / Departments Picture Type ... Embedded
B 32| - E = Transparent........ Mo
- o /{ Default............. Mo
r e B Cancel Mo
d L - Auto Repeat. Mo
r Status Bar Text.
b Wisible ..o Yes
Display When Alwans
C Scroll down the property sheet and change Enahled ... ves
the value of the buttonBont Size property. T#kstap......... ves
Resize the button by dragging its handles. = Tandex.......... .
Left. ..o 0.698cm LI
|_ﬁHome | I4dPrevious | 220f26 | Nextp |

13. Event-Driven Programming Using Macros Tutorial exercises

FIGURE 13.17: Use the command button wizard to create a button for the switchboard.

. SelectForm Operations > Open Form as
L AL & he action type associated with the button.

e available for each categary. c Provide a caption
for the button.
\

Actions: Command Button Wizard

Apply Form Filter Do wou wanl\text or a picture on the button?
Clase Farm

dit Form Filter

Record Navijtiun
Fecord Opergki

If vou choose\Text, wou can type the textto
Ficture, wou ot click Browse to find & pict.

ns

Report Operatio
Application
Command Button Wizard

Frint a Form “iew &Courses

WS Access Form
YWhat form would wou like the command b

Departments

HrmCourses

frmCourseshdal =1 Shigwal Pictures
trmCoursesUB

frmDepartments Select the correct for

sfrmSections from the list.

swhbdain

M Home | [4Previous | 23026 | Nextp |

13. Event-Driven Programming Using Macros

often used to display a switchboard when the user
starts the application.

Another typical auto-execute operation is to hide the
database window. By doing this, you unclutter the
screen and reduce the risk of a user accidentally
making a change to the application (by deleting a
database object, etc.).

To unhide the database window, select Win-
dow > Unhide from the main menu or press

the database window icon (&) on the toolbar.

The problem with hiding the database window using
a macro is that there is no HideDatabaseWindow
command in the Access macro language. As such,
you have to rely on the rather convoluted DoMenu-
Item action.

As its name suggests, the DoMenultem action per-
forms an operation just as if it had been selected

Tutorial exercises

from the menu system. Consequently, you need to
know something about the menu structure of Access
before you create your macro.

A In version 8.0, the DoMenultem action has
been replaced by the slightly more intuitive
RunCommandaction. See on-line help for
more information on RunCommand

* Create an auto-execute macro

* Add the DoMenultem and OpenForm actions to
hide the database window and open the main
switchboard, as shown in Figure 13.18.

 Close the database and reopen it after a short
delay to test the macro.

In version 7.0 and above, you do not need to
@ use an autoexec macro to hide the database

window and open a form. Instead, you can

right-click on the database window, select

24 of 26

M Home | [4Previous | [Next P |

13. Event-Driven Programming Using Macros

FIGURE 13.18: Create an auto-execute macro.

¥ autoexec : Macro

| Action
P |Dakenultem |
OpenForm
hdenu Bar Database

henu Mame Wiircd o
Command Hide
Sub rrand

a2 For theDoMenultem action, select the

Window > Hide commands from the
Database menu (i.e., the menu that is active
when the database window is being used).

Startup, and fill in the properties for the appli-
cation.

Discussion
13.4 Discussion

13.4.1 Event-driven programming versus
conventional programming

The primary advantages of event-driven program-
ming are the following:

1. Flexibility — since the flow of the application is
controlled by events rather than a sequential pro-
gram, the user does not have to conform to the
programmer’s understanding of how tasks should
be executed.

2. Robustness — Event-driven applications tend to
be more robust since they are less sensitive to
the order in which users perform activities. In
conventional programming, the programmer has
to anticipate virtually every sequence of activities
the user might perform and define responses to
these sequences.

|ﬁHome | I4dPrevious | 250f26 | Nextp |

13. Event-Driven Programming Using Macros Application to the assignment

The primary disadvantage of event-driven programs » Create a main switchboard for you application. It
is that it is often difficult to find the source of errors should provide links to all the database objects
when they do occur. This problem arises from the your user is expected to have access to (i.e., your
object-oriented nature of event-driven applications— forms).

since events are associated with a particular object
you may have to examine a large number of objects
before you discover the misbehaving procedure.
This is especially true when events cascade (i.e., an
event for one object triggers an event for a different
object, and so on).

13.5 Application to the assignment
» Add “update status” check boxes to you transac-
tion processing forms (i.e., Orders and Ship-
ments)
 Create a conditional macro for your Shipments
form to prevent a particular shipment from being
added to inventory more than once.

|ﬁHome | IdPrevious | 260f26 | Nextp |

	13.1 Introduction: What is event- driven programmi...
	13.1.1 Triggers
	13.1.2 The Access macro language
	13.1.3 The trigger design cycle

	13.2 Learning objectives
	13.3 Tutorial exercises
	13.3.1 The basics of the macro editor
	13.3.2 Attaching the macro to the event
	13.3.3 Creating a check box to display update stat...
	13.3.4 The SetValue command
	13.3.5 Creating conditional macros
	13.3.6 Creating switchboards
	13.3.7 Using an autoexec macro

	13.4 Discussion
	13.4.1 Event-driven programming versus conventiona...

	13.5 Application to the assignment

