Access Tutorial 3: Relationships

3.1 Introduction: The advantage of

using tables and relationships

A common mistake made by inexperienced data-
base designers (or those who have more experience
with spreadsheets than databases) is to ignore the
recommendation to model the domain of interest in
terms of entities and relationships and to put all the
information they need into a single, large table.
Figure 3.1 shows such a table containing information
about courses and sections.

« If you have not already done so, open the

univO_v x.mdb database.

* Open the Catalog View table.

The advantage of the single-table approach is that it
requires less thought during the initial stages of
application development. The disadvantages are too
numerous to mention, but some of the most impor-
tant ones are listed below:

© Michael Brydon (brydon@unixg.ubc.ca)
Last update: 22-Aug-1997

1.

Wasted space — Note that for COMM 290, the
same basic course information is repeated for
every section. Although the amount of disk space
wasted in this case is trivial, this becomes an
important issue for very large databases.
Difficulty in making changes — What happens if
the name of COMM 290 is changed to “Mathe-
matical Optimization™? This would require the
same change to be made eight times. What if the
person responsible for making the change for-
gets to change all the sections of COMM 2907
What then is the “true” name of the course?
Deletion problems — What if there is only one
section of COMM 290 and it is not offered in a
particular year? If section 001 is deleted, then the
system no longer contains any information about
the course itself, including its name and number
of credits.

10f10

M Home | [4Previous | [Next P |

3. Relationships Introduction: The advantage of using tables and relatior

FIGURE 3.1: The “monolithic” approach to database design—the Catalog View table contains
information about courses and sections.

The course “COMM 290" consists
of many sections. CatalogNum | DeptCode | CrsNum Title Section
CChARA 290 Introduction to Qual 008
CChARA 290 Introduction to Qual 001
Each section has some information COMM 240 Introduction to Guarl 005
unique to that section (such as COMM 290 Introduction to Qual 002
Time, Days, Building COMM 290 Introduction to Qual 003
Room); however, the basic course COMM 290 Introduction to Qual 004
information (e.g.Title COMM 290 Introduction to Qual 007
gggggrs]s 3}); trt‘aert?g:?; gu"’l‘r!e. COMM 290 Infroduction to Qual 008
COlM 291 Applied Statistics in 002
COM 291 Applied Statistics in 003

|ﬁHome | I4Previous | 20f10 [Next P |

3. Relationships

4. Addition problems — If a new section is added to
any course, all the course information has to be
typed in again. Not only is this a waste of time, it
increases the probability of introducing errors into
the system.

3.1.1 *“Normalized” table design

The problems identified above can be avoided by
spitting the Catalog View table into two separate
tables:

1. Courses — information about courses only
2. Sections — information about sections only.

The key to making this work is to specify a relation-
ship between Courses and Sections so that when
we look at a section, we know which course it
belongs to (see Figure 3.2). Since each course can
have one or more sections, such a relationship is
called “one-to-many”.

Introduction: The advantage of using tables and relatior

FIGURE 3.2: A one-to-many relationship between
Courses and Sections

Sections

==—=CrsNum
Section
Session

CatalogMum

Term =]

Access uses relationships in the following way:
Assume you are looking at Section 004 of

COMM 290. Since Dept and CrsNum are included in
the Sections table, and since a relationship line
exists between the same two fields in the Courses
table, Access can trace back along this line to the
Courses table and find all the course-specific infor-
mation. All other sections of COMM 290 point back

30f10

M Home | [4Previous | [Next P |

3. Relationships

to the same record in the Courses table so the
course information only needs to be stored once.

3.2 Learning objectives

O Why do | want to represent my information in
multiple tables connected by relationships?

a

How do | create relationships in Access?

a

How do | edit or change relationships?

O What is referential integrity and why is it
important?

3.3 Tutorial exercises

3.3.1 Creating relationships between
tables

* Close the Catalog View
the database window.

table and return to

Learning objectives

» Select Tools > Relationships from the main
menu.

In version 2.0 the menu structure is slightly
different. As such, you select Edit > Relation-
ships instead.

* To add a table to the relationship window, select
Relationships > Show Table from menu or press
the show table icon (&) on the tool bar.

» Perform the steps shown in Figure 3.3 to add the
Courses and Sections tables.

» Specify the relationship between the primary
key in Courses and the foreign key in Sec-
tions . This is shown in Figure 3.4.

f Do not check cascading deletions or updates
unless you are absolutely sure what they
mean. See on-line help if you are curious.

40110

M Home | [4Previous | [Next P |

3. Relationships

FIGURE 3.3: Add the Courses and Sections

@ The rectangular “field list” represents a
table. Note that the key (or keys) composing
the primary key are shown in bold type.

=2 Relati-qships

Courses_1

Tutorial exercises

tables to the relationship window.

Select the table you wish to add and either
a)

double-click or presAdd. Repeat as necessary.

@ If you accidently add a table more than once, it §

will show up with a<table name>_1 label.
To delete the extra version, click anywhere on

the unwanted rectangle and press the delete key.

Coursg
Deppptments
Employvees

| #ArHome | [{Previous |

50f10

Close |

| Next D |

3. Relationships

A

FIGURE 3.4: Create a relationship between the two tables.

Select the primary key
on the “one” side of th
relationship.

To select a concatenate
key (more than one
field) hold down the

Control key while
selecting.

Ensure that the correct
fields are associated
with each other (this
must be done manually
for concatenated keys).

Check the box to
enforce referential
integrity.

== Relationships

E Table/Query:

Related Table/Query:

To

relationship.

Enforce Referential Inj Session

Cascade Uadate Bl

T GaccadeDelete P Doys

Relationship Twpe:

Courses [Sections

DeptCode DeptCode | Cancel

CrsMum 2
/VMDENCME = dain Type...

= I
Create

Tutorial exercises

Drag the selected fields on to the
foreign key on the “many” side of the

If done
correctly, the
connectivity(1
to c) shows on
the relationship
line(s).

Section
=2 Relationships

CatalogMum

Term

Time

One-To-tany SEdj'_:'"
Session
CatalogMNum
Term ;l

[#rtome | [€Previous | 60f10 [[NextP]

3. Relationships

3.3.2 Editing and deleting relationships

There are two common reasons for having to edit or
delete a relationship:

1.

You want to change the data type of one of the
fields in the relationship — Access will not let you
do this without first deleting the relationship (after
you change the data type, you must re-create the
relationship).

You forget to specify referential integrity — if the
“1” and “” symbols do not appear on the rela-
tionship line, then you have not checked the box
to enforce referential integrity.

In this section, assume that we have forgotten to
enforce referential integrity between Courses and
Sections

» Perform the steps shown in Figure 3.5 to edit the

relationship between Courses and Sections

Discussion

Note that simply deleting the table in the rela-
tionship window does not delete the relation-
ship, it merely hides it from view.

3.4 Discussion

3.4.1 One-to-many relationships

There are three types of relationships that occur in
data modeling:

1. one-to-one — A one-to-one relationship exists
between a student and a student number.

2. one-to-many — A one-to-many relationship
exists between courses and sections: each
course may consist of many sections, but each
section is associated with exactly one course.

3. many-to-many — A many-to-many relationship
exists between students and courses: each stu-
dent can take many courses and each course
can contain many students.

|ﬁHome | I4Previous | 70f10 [Next P |

3. Relationships Discussion

FIGURE 3.5: Edit an existing relationship.

@ The missing “1” and &” symbols
indicate that referential integrity has
not been enforced.
a2 Select the relationship by clicking on
the joining line (click on either line if —
the key is concatenated). If you do EEERATIEITIE
this correctly, the line becomes
darker.

Sections
DeptCode -
Edit Relationship...
Delete Relationship

—

‘b With the relationship selected, right-

click to get the edit/delete pop-up —
menu. If you do not get this menu,
make sure you have correctly
selected the relationship.

CatalogMum

Term =]

|ﬁHome | I4Previous | 80f10 [Next P |

3. Relationships

Although the data modeling technique used most
often in information system development—Entity-
Relationship diagraming —permits the specifica-
tion of many-to-many relationships, these relation-
ships cannot be implemented in a relational
database. As a consequence, many-to-many rela-
tionships are usually broken down into a series of
one-to-many relationships via “composite entities”
(alternatively, “bridging tables”). Thus to implement
the student-takes-course relationship, three tables
are used: Students , Courses , and Student-
TakesCourse .

3.4.2 Referential integrity

One important feature of Access is that it allows you
to enforce referential integrity at the relationship
level. What is referential integrity? Essentially, refer-
ential integrity means that every record on the

Discussion

“many” side of a relationship has a corresponding
record on the “one” side.

Enforcing referential integrity means that you cannot,
for instance, create a new record in the Sections
table without having a valid record in the Courses
table. This is because having a section called
“BSKW 101 Section 001” is meaningless unless
there is a course called “BSKW 101”". In addition, ref-
erential integrity prevents you from deleting records
on the “one” side if related records exist on the
“many” side. This eliminates the problem of
“orphaned” records created when parent records are
deleted.

Referential integrity is especially important in the
context of transaction processing systems. Imagine
that someone comes into your store, makes a large
purchase, asks you to bill customer number “123”,
and leaves. What if your order entry system allows
you to create an order for customer “123” without

90f10

M Home | [4Previous | [Next P |

3. Relationships Application to the assignment

first checking that such a customer exists? If you A primary key and a foreign key must be of
have no customer 123 record, where do you send the same data type before a relationship can
the bill? be created between them. Because of this, it
In systems that do not automatically enforce referen- is important to remember that the autonumber
tial integrity, these checks have to be written in a pro- data type (or counter in version 2.0) is really a
gramming language. This is just one example of how long integer.

table-level features can save you enormous pro-

gramming effort f It never makes sense to have a relationship

between two autonumber fields. A foreign key

f Enforcing referential integrity has obvious F:annqt be an au.tonumbe.r si.nce referential
late the “many” side of the table until you pop- existing value from a parent table.

ulate the “one” side.

3.5 Application to the assignment
» Specify all relationships—including referential
integrity constraints—between tables in your sys-
tem. You are not responsible for cascading
updates/deletions in this assignment.

|ﬁHome | I4dPrevious | 100f10 | Nextp |

	3.1 Introduction: The advantage of using tables an...
	3.1.1 “Normalized” table design

	3.2 Learning objectives
	3.3 Tutorial exercises
	3.3.1 Creating relationships between tables
	3.3.2 Editing and deleting relationships

	3.4 Discussion
	3.4.1 One-to-many relationships
	3.4.2 Referential integrity

	3.5 Application to the assignment

