
NextHome Previous 1 o f 33

ed Tri ggers

w do I create an unbound combo box?

n I implement the search capability using
sual Basic?

torial exercises

sing a macro to run VBA code
ome things that cannot be done using the
acro language. If the feature you wish to

nt is critical to your application, then you
lement it using VBA. However, since it is
to call a VBA function from within a macro,
ot have to abandon the macro language
ly.

ction, you are going to execute the Param-

 subroutine you created in Section 12.3.6
in a macro. Since the RunCode action of
ss macro language can only be used to exe-
© M
Last

15.

In th
skill
men

15.
�

�

�

�

�

ichael Brydon (brydon@unixg.ubc.ca)
 update: 25-Aug-1997

Access Tutorial 15: Advanc

1 Introduction: Pulling it all
together

is tutorial, you will bring together several of the
s you have learned in previous tutorials to imple-
t some sophisticated triggers.

2 Learning objectives
How do I run VBA code using a macro?

How do I use the value in one field to
automatically suggest a value for a different
field?

How do I change the table or query a form is
bound to once the form is already created?

What is the After Update event? How is it
used?

How do I provide a search capability for my
forms?

� Ho

� Ca
Vi

15.3 Tu

15.3.1 U
There a s
Access m
impleme
must imp
possible
you do n
complete

In this se
eterTest

from with
the Acce

Tutorial exercises15

NextHome Previous 2 o f 33

cu
tw

1.

2.

15

Si
in

unction calls the
ameterTest subroutine

eterTest intStart, intStop

eterTestWrapper = True
rn a value

unction

he function, as shown in Figure 15.1.

te that the return value of the function is
clared as an integer, but the actual assign-

ent statement is ParameterTestWrap-

r = True . This is because in Access/
A, the constants True and False are
fined as integers (-1 and 0 respectively).

Using the RunCode action
 the module open (you may have to resize
r move the debug window) and create a
acro called mcrRunCodeTest .
. Advanced Triggers

te functions (not subroutines) you must do one of
o things before you create the macro:

Convert ParameterTest to a function — you do
this simply by changing the Sub at the start of the
procedure to Function .
Create a new function that executes Parame-

terTest and call the function from the macro.

.3.1.1 Creating a wrapper

nce the second alternative is slightly more interest-
g, it is the one we will use.
• Open your basTesting module from

Tutorial 12.
• Create a new function called ParameterTest-

Wrapper defined as follows:

Function
ParameterTestWrapper(intStart As
Integer, intStop As Integer) As
Integer

'this f
Par

Param

Param
'retu

End F

• Call t

No
de
m
pe

VB
de

15.3.1.2
• Leave

and/o
new m

Tutorial exercises15

NextHome Previous 3 o f 33

arameterTest subroutine.

Use the Print statement to
invoke the function (do not forget
the parameters).

�

The return value of
ParameterTestWrapper()
is True, so this is printed when
the function ends.
. Advanced Triggers

FIGURE 15.1: Create a function that calls the P

Create a function to call
the ParameterTest
subroutine.

�

Since ParameterTest
does not return a value, its
arguments are not in
brackets.

Tutorial exercises15

NextHome Previous 4 o f 33

t Run > Start to execute the macro as
n in Figure 15.3.

Using activity information to
determine the number of credits
ction, you will create triggers attached to the
ate event of bound controls.

Scenario

that each type of course activity is generally
d with a specific number of credits, as
low:

Activity Credits

lecture 3.0

lab 3.0

tutorial 1.0

seminar 6.0
. Advanced Triggers

• Add the RunCode action and use the expression
builder to select the correct function to execute,
as shown in Figure 15.2.

The expression builder includes two parame-
ter place holders (<<intStart>> and
<<intStop>>) in the function name. These
are to remind you that you must pass two
parameters to the ParameterTestWrap-

per() function. If you leave the place holders
where they are, the macro will fail because
Access has not idea what <<intStart>>
and <<intStop>> refer to.

• Replace the parameter place holders with two
numeric parameters (e.g. 3 and 6). Note that in
general, the parameters could be field names or
any other references to Access objects contain-
ing (in this case) integers.

• Selec
show

15.3.2

In this se
After Upd

15.3.2.1

Assume
associate
shown be

Tutorial exercises15

NextHome Previous 5 o f 33

t the function to execute.

Note the <<intStart>> and
<<intStop>> parameter place
holders. These must be replaced
with expressions that Access
understands.
. Advanced Triggers

FIGURE 15.2: Use the expression builder to selec

Add a RunCode
action to the macro.�

Use the expression builder to drill
down to the user-defined functions in
your database file.

�

Tutorial exercises15

NextHome Previous 6 o f 33

as well that the number of credits for a par-
e of course is not cast in stone. As such,
ers given above are merely “default” val-

t to use the default credit values when you
new course or modify an existing course.
, the user may override this default if neces-
 particular course. The basic requirement is
 in Figure 15.4.

Designing the trigger

 the foregoing, the answer to the “what”
 is the following:

up the default number of credits associated
he course activity showing in the form’s
ty field.
 this number into the Courses.Credits
. Advanced Triggers

Assume
ticular typ
the numb
ues.

You wan
create a
However
sary for a
illustrated

15.3.2.2

Based on
question

1. Look
with t
Activi

2. Copy
field.

FIGURE 15.3: Execute the RunCode macro.

Replace the
parameter place
holders.

�

Select Run > Start (or press the ! icon in
the tool bar) to execute the macro.�

Tutorial exercises15

NextHome Previous 7 o f 33

to a new record.

Select “Lecture” from the list of list of
course activities created in Tutorial 8.

Create a macro to find the default number
of credits and copy the value it into the
Credits field.

Once the Activity field is updated, the
macro executes. The value in the
Credits field can be changed by the
user.
. Advanced Triggers

FIGURE 15.4: Inserting a default value in

Create a new record for a lecture-based
course: COMM 437: Database Technology�

�

Since this is a new record, the default
value of Credits (like any numeric
field) is zero. You want to use the
information you just specified in the
Activity field to automatically
look up the correct default number of
credits for a lecture course and insert
it in the Credits field.

�

�

Tutorial exercises15

NextHome Previous 8 o f 33

Th
qu
ex

1.

2.

15

re that you have a courses form (e.g., frm-

es) and that the form has a combo box for
ctivity field. You may wish to order the
 such that Activity precedes Credits in
b order (as shown in Figure 15.4).

your move fields around, remember to
just the tab order accordingly (recall
ction 8.3.4).

Looking up the default value

iscovered in Section 14.3.5, Access has a
() function that allows you to go to the

 table and find the value of Credits
icular value of Activity . A different
 is to join the Activities table with the
 table in a query so that the default value of
 always available in the form. This is the
 we will use here.
. Advanced Triggers

ere are several possible answers to the “when”
estion (although some are better than others). For
ample:

When the user enters the Credits field (the On
Enter event for Credits) — The problem with
this choice is that the user could modify the
course’s activity without moving the focus to the
Activity field. In such a case, the trigger would
not execute.
When the user changes the Activity field (the
After Update event for Activity) — This choice
guarantees that whenever the value of Activ-

ity is changed, the default value will be copied
into the Credits field. As such, it is a better
choice.

.3.2.3 Preliminary activities
• Modify the Activities table to include a single-

precision numeric field called Credits . Add the
values shown in the table in Section 15.3.2.1.

• Ensu
Cours

the A
fields
the ta

If
ad
Se

15.3.2.4

As you d
DLookUp

Activities

for a part
approach
Courses

credits is
approach

Tutorial exercises15

NextHome Previous 9 o f 33

Si
Co

(ra

E 15.5: Use a join to make the default
value available.
. Advanced Triggers

• Ensure you have a relationship (in the main rela-
tionship window) between Courses.Activity
and Activities.Activity .

• Create a new query called qryCoursesAnd-

Credits based on the Courses and Activi-

ties tables (see Figure 15.5).

Notice that you have two credits fields:
Courses.Credits (the actual number of
credits for the course) and Activi-

ties.Credits (the “default” or “suggested”
number of credits based on the value of
Activity). Access uses the <table

name>.<field name> notation whenever a
query contains more than one field with the
same name.

nce you already have forms based on the
urses table that expect a field called Credits
ther than one called Courses.Credits), it is a

FIGUR

Tutorial exercises15

NextHome Previous 10 o f 33

go
fie
fie

15

Ra
Co

Re
fo
Co

 15.6: Rename one of the Credits fields.

ename Credits form the Activities
able to DefaultCredits .
. Advanced Triggers

od idea to rename the Activities.Credits
ld in the query. You do this by creating a calculated
ld.

• Rename Activities.Credits to Default-

Credits as shown in Figure 15.6. Note that this
eliminates the need for the <table

name>.<field name> notation.

.3.2.5 Changing the Record Source of the
form

ther than create a new form based on the qry-

ursesAndCredits query, you can modify the
cord Source property of the existing frmCourses

rm so it is bound to the query rather than the
urses table.

• Bring up the property sheet for the frmCourses
form and change the Record Source property to
qryCoursesAndCredits as shown in
Figure 15.7.

FIGURE

R
t�

Tutorial exercises15

NextHome Previous 11 o f 33

ntage of using a join query in this manner is
ultCredits is now available for use
 form and within any macros or VBA mod-

 run when the form is open.

Creating the SetValue macro

alue macro you require here is extremely
ce you have DefaultCredits available
 scope of the form.

e the mcrCourses.SetCredits macro
own in Figure 15.8.

Attaching a procedure to the After
Update event

lick event of a button is fairly simple to
nd: the event occurs when the button is
he events associated with non-button
perate in exactly the same way. For exam-
fter Update event for controls (text box,

ox, check box, etc.) occurs when the value
. Advanced Triggers

The adva
that Defa

within the
ules that

15.3.2.6

The SetV

simple on
within the

• Creat
as sh

15.3.2.7

The On C
understa
clicked. T
objects o
ple, the A
combo b

FIGURE 15.7: Change the Record Source
property of an existing form.

Bring up the form’s property list and
change its Record Source property.�

The field list now contains all
the fields in the new query.

Tutorial exercises15

NextHome Previous 12 o f 33

of
Af
ca
on

h the mcrCourses.SetCredits macro to
fter Update event of the Activity field.
 that the trigger works properly.

Use an unbound combo box to
automate search
oned in Tutorial 8, a combo box has no
earch capability. However, the idea of scan-
ort list of key values, selecting a value, and
l the information associated with that record
 the screen is so basic that in Access ver-

and above, this capability is included in the
ox wizard. In this tutorial, we will look at a
 different means of creating a combo boxes
h from scratch.

Manual search in Access

ow Access searches for records, do the fol-

 your frmDepartments form.
. Advanced Triggers

 the control is changed by the user. As a result, the
ter Update event is often used to trigger data verifi-
tion procedures and “auto-fill” procedures like the
e you are creating here.

• Attac
the A

• Verify

15.3.3

As menti
intrinsic s
ning a sh
having al
pop on to
sion 7.0
combo b
couple of
for searc

15.3.3.1

To see h
lowing:

• Open

FIGURE 15.8: Create the SetValue macro.

Create a macro group called mcrCourses
and a named macro called SetCredits .�

You can use the builder to set the arguments
or simply type in the names of the fields.�

Tutorial exercises15

NextHome Previous 13 o f 33

•

In
(u
co
Ac
se
th
m

15

To
De

de
de
lo

e Enabled property of DeptCode to No (the
hould never be able to change the key val-

f existing records).

Creating the unbound combo box

thing to remember about the combo box
pecify the search criterion is that it has
o do with the other fields or the underlying
 such, it should be unbound.
e an unbound combo box in the form
r, as shown in Figure 15.10.

ge the Name property of the combo box to
eptCode .
esulting combo box should resemble that
n in Figure 15.11.

hen you create an unbound combo box,
cess gives it a default name (e.g.,
mbo5). You should do is change this to
mething more descriptive (e.g., cboDept-
. Advanced Triggers

• Move to the field on which you want to search
(e.g., DeptCode);
Select Edit > Find (or press Control-F);

• Fill out the search dialog box as shown in
Figure 15.9.

 the dialog box, you specify what to search for
sually a key value) and specify how Access should
nduct its search. When you press Find First,
cess finds the first record that matches your
arch value and makes it the current record (note
at if you are searching on a key field, the first
atching record is also the only matching record).

.3.3.2 Preliminaries

 make this more interesting, assume that the frm-

partments form is for viewing editing existing
partmental information (rather than adding new
partments). To enforce this limitation, do the fol-

wing:
• Set the form’s Allow Additions property to No.

• Set th
user s
ues o

15.3.3.3

The key
used to s
nothing t
table. As

• Creat
heade

• Chan
cboD

• The r
show

W
Ac
Co

so

Tutorial exercises15

NextHome Previous 14 o f 33

 “find” dialog box.
. Advanced Triggers

FIGURE 15.9: Search for a record using the

Move the cursor to
the field you wish to
search and invoke
the search box
using Control-F.

�

Enter the value you wish to find
and set the other search
parameters as required.

�

Press Find First to move to the first
(or only) record that matches the
search condition.

�

Limit the search to the current
field (i.e., the field with the
focus when the search box was
opened).

�

Tutorial exercises15

NextHome Previous 15 o f 33

 combo box.
. Advanced Triggers

FIGURE 15.10: Create an unbound

Drag the separator for the detail
down to make room in the form
header

�

Create an unbound combo box by
selecting the combo box tool and
clicking in the header area.

�

Use the wizard in the usual way
to get a list of valid DeptCode
values and descriptions. The
bound column for the combo box
should be DeptCode .

�

Since the combo box is unbound,
its value has to be stored for later
use rather than stored in a field.

�

Tutorial exercises15

NextHome Previous 16 o f 33

Automating the search procedure
using a macro

 implement search functionality with a
ox, only two things are different from the
earch in Figure 15.9:

arch dialog box does not show up, and
er selects the search value from the combo
ther than typing it in.

c sequence of actions, however, remains
. As a result, the answer to the “what” ques-
 following:

 the cursor to the DeptCode field (this
s the “Search Only Current Field” option to
ed, thereby drastically cutting the search

e the search feature using the current value
DeptCode as the search value.
. Advanced Triggers

Code). The advantage of the prefix cbo is
that it allows you to differentiate between the
bound field DeptCode and the unbound
combo box.

15.3.3.4

When we
combo b
manual s

1. the se
2. the us

box ra

The basi
the same
tion is the

1. Move
allow
be us
time).

2. Invok
of cbo

FIGURE 15.11: An unbound combo box.

Although the DeptCode column has been
hidden, it is the “bound” column. As a result,
the value of the combo box as it appears here
is “COMM”, not “Commerce and ...”

Tutorial exercises15

NextHome Previous 17 o f 33

3.

Th
De

in
to
en

•

RE 15.13: Fill in the arguments for the
FindRecord action.

Create a named macro called
mcrSearch.FindDepartment .�

nter the action arguments. Do not forget the
quals sign before the name of the combo box.

Since Value is
the default
property, its use
is optional.
. Advanced Triggers

Move the cursor back to cboDeptCode or some
other field.

e only problem with this procedure is that the
ptCode text box is disabled. As a result, you must

clude an extra step at the beginning of the macro
 set its Enabled property to Yes and another at the
d of the macro to return it to its original state.

• Create a new macro called mcrSearch.Find-

Department .
• Use the SetValue action to set the Dept-

Code.Enabled property to Yes. This can be
done using the expression builder, as shown in
Figure 15.12.

• Use the GotoControl action to move the cursor
to the DeptCode text box. Note that this action
will fail if the destination control is disabled.
Use the FindRecord action to implement the
search as shown in Figure 15.13.

FIGU

E
e�

Tutorial exercises15

NextHome Previous 18 o f 33

e of the property to set.
. Advanced Triggers

FIGURE 15.12: Use the builder to specify the nam

To set the Item argument, use the
expression builder to drill down
to the correct form.

�

 Select the unbound combo box
(cboDeptCode) from the middle
pane. A list of properties for the
selected object is displayed in the
pane on the right.

�

The middle pane shows all the
objects on the form including
labels and buttons (hence the
need for a good naming
convention).

Tutorial exercises15

NextHome Previous 19 o f 33

sing Visual Basic code instead of
a macro
f attaching a macro to the After Update
u can attach a VBA procedure. The VBA
e is much shorter than its macro counter-

y (clone) of the recordset underlying the
is created,
indFirst method of this recordset is used
 the record of interest.
ookmark” property of the clone is used to
 to the corresponding bookmark for the

 a VBA search procedure, do the following:
ge the After Update event of cboDeptCode
ent Procedure”.
 the builder () to create a VBA subrou-
. Advanced Triggers

Access interprets any text in the Find What
argument as a literal string (i.e., quotation
marks would not be required to find COMM). To
use an expression (including the contents of a
control) in the Find What argument, you must
precede it with an equals sign (e.g.,
=[cboDeptCode] .

• You cannot disable a control if it has the focus.
Therefore, include another GotoControl action
to move the cursor to cboDeptCode before set-
ting DeptCode.Enabled = No .

• Attach the macro mcrSearch.FindDepart-

ment to the After Update event of the cboDept-

Code combo box.
• Test the search feature.

15.3.4 U

Instead o
event, yo
procedur
part:

1. a cop
form

2. the F
to find

3. the “b
move
form.

To create
• Chan

to “Ev
• Press

tine.

Application to the assignment15

NextHome Previous 20 o f 33

Th
m

•

•

•

-human-readable data type and therefore is
 much use unless it is used in the manner
n here. Setting the Bookmark property of a
d makes the record with that bookmark the
nt record. In the example above, the book-
of the records underlying the form is set to
 the bookmark of the clone. Since the clone
s bookmark set by the search procedure,
 equivalent to searching the recordset
lying the form.

pplication to the assignment

Triggers to help the user
e a trigger on your order form that sets the
l selling price of a product to its default
 This allows the user to accept the default
or enter a new price for that particular trans-
 (e.g., the item could be damaged). You will
. Advanced Triggers

• Enter the two lines of code below, as shown in
Figure 15.14.

Me.RecordsetClone.FindFirst
“DeptCode = ‘” & cboDeptCode & “'”

Me.Bookmark =
Me.RecordsetClone.Bookmark

is program consists of a number of interesting ele-
ents:
• The property Me refers to the current form. You

can use the form's actual name, but Me is much
faster to type.
A form’s RecordsetClone property provides a
means of referencing a copy of the form's under-
lying recordset.
The FindFirst method is straightforward. It
acts, in this case, on the clone.
Every recordset has a bookmark property that
uniquely identifies each record. A bookmark is
like a “record number”, except that it is stored as

a non
not of
show
recor
curre
mark
equal
had it
this is
under

15.4 A

15.4.1
• Creat

actua
price.
price
action

Application to the assignment15

NextHome Previous 21 o f 33

g a short VBA procedure.

ange the After Update event to
ference an event procedure.

ess the builder button to invoke the VBA
itor.

cess automatically names the
broutine. Enter the two lines of code.
. Advanced Triggers

FIGURE 15.14: Implement the search feature usin

Ch
re�

Pr
ed�

Ac
su�

Application to the assignment15

NextHome Previous 22 o f 33

•

15
O
is
pr

0.4). The problem is updating the Back-

table itself because two different situations
e considered:

ord for the particular customer-product
ination exists in the BackOrders table --
ckorder record exists for a particular cus-
 and a particular product, the quantity field
 record can be added-to or subtracted-from
ckorders are created and filled.
tomer-product record does not exist in
ackOrders table -- If the particular cus-
 has never had a backorder for the product
stion, then there is no record in the Back-

s table to update. If you attempt to update
existent record, you will get an error.

equired, therefore, is a means of determin-
er a record already exists for a particular

r-product combination. If a record does
n it has to be updated; if a record does not
. Advanced Triggers

have to think carefully about which event to
attach this macro to.

• Create a trigger on your order form that calcu-
lates a suggested quantity to ship and copies this
value into the quantity to ship field. The sug-
gested value must take into account the amount
ordered by the customer, any outstanding backo-
rders for that item by that customer, and the cur-
rent quantity on hand (you cannot ship what you
do not have). The user should be able to override
this suggested value. (Hint: use the MinValue()
function you created in Section 12.5.)
Provide you customer and products forms with
search capability.

.4.2 Updating the BackOrders table
nce a sales order is entered into the order form, it
a simple matter to calculate the amount of each
oduct that should be backordered (you did this in

Section 1
Orders
have to b

1. A rec
comb
If a ba
tomer
of the
as ba

2. A cus
the B
tomer
in que
Order

a non

What is r
ing wheth
custome
exist, the

Application to the assignment15

NextHome Previous 23 o f 33

ex
en
in
sh
th

Th
rd

tio

15

If
Ite

Se
du
at

ee Section 15.3.2.4 to review renaming
lds in queries).

t if the backordered quantity is positive,
 backordered. If the backordered quantity is
, backorders are being filled. If the backor-
antity is zero, no change is required and
ords should no be included in the results of
.

Import the shortcut function

e Visual Basic for Applications (VBA) mod-
ining the code for the
ackOrders() function. This module is
d in an Access database called
.mdb that you can download from the

ome page.
_V2.mdb is for those running Access ver-
.0. To import the module, select File >
. Advanced Triggers

ist, then one has to be created. This is simple
ough to talk about, but more difficult to implement

 VBA. As a result, you are being provided with a
ortcut function called UpdateBackOrders()

at implements this logic.

e requirements for using the UpdateBackO-

ers() function are outlined in the following sec-
ns:

.4.2.1 Create the pqryItemsToBackOrder
query

you have not already done so, create the pqry-

msToBackOrder query described in
ction 10.4. The UpdateBackOrders() proce-
re sets the parameter for the query and then cre-

es a recordset based on the results.

If you did not use the field names OrderID ,
and ProductID in your tables, you must use
the calculated field syntax to rename them

(s
fie

Note tha
items are
negative
dered qu
these rec
the query

15.4.2.2

Import th
ule conta
UpdateB

containe
BOSC_Vx
course h

• BOSC

sion 2

Application to the assignment15

NextHome Previous 24 o f 33

15

Th
Up

Th
th
fu
rd

15

Th
cif

 Products . If any of your tables or fields
d differently, an error occurs. To eliminate

ors, you can do one of two of things:

he VBA code. Use the search-and-replace
e of the module editor to replace all
ces of field names in the supplied proce-
 with your own field names. This is the rec-
nded approach, although you need an
ate understanding of how the code works

er to know which names to change.
ge the field names in your tables (and all
s and forms that reference these field

s). This approach is not recommended.

Understanding the
UpdateBackOrders() function
chart for the UpdateBackOrders() func-
own in Figure 15.15. This function repeat-
 a subroutine, BackOrderItem , which
. Advanced Triggers

Import, choose BOSC_V2.mdb, and select Mod-
ule as the object type to import.

• BOSC_V7.mdb is for those running Access ver-
sion 7.0 or higher. To import the module, select
File > Get External Data > Import, choose
BOSC_V7.mdb, and select Module as the object
type to import.

.4.2.3 Use the function in your application

e general syntax of the function call is:
dateBackOrders(OrderID, CustomerID) .

e OrderID and CustomerID are arguments and
ey both must be of the type Long Integer. If this
nction is called properly, it will update all the backo-
ered items returned by the parameter query.

.4.2.4 Modifying the UpdateBackOrders()
function

e UpdateBackOrders() function looks for spe-
ic fields in three tables: BackOrders , Custom-

ers , and
are name
these err

1. Edit t
featur
instan
dures
omme
adequ
in ord

2. Chan
querie
name

15.4.3

The flow
tion is sh
edly calls

Application to the assignment15

NextHome Previous 25 o f 33

up
rd

su

Th
m
Al
ita
na
qu
Ac
be

start

is
the list
empty?

error message

un pqryItemsToBackOrder
to get list of items to backorder

do until end of list

call BackOrderItems

stop

(CustID,ProductID,Qty)

yes

no

stop

FIGURE 15.15: Flowchart for
UpdateBackOrders() .
. Advanced Triggers

dates or adds the individual items to the BackO-

ers table. The flowchart for the BackOrderItem
broutine is shown in Figure 15.16.

ere are easier and more efficient ways of imple-
enting routines to update the BackOrders table.
though some amount of VBA code is virtually inev-
ble, a great deal of programming can be elimi-
ted by using parameter queries and action
eries. Since queries run faster than code in
cess, the more code you replace with queries, the
tter.

To get full marks for the backorders aspect of
the assignment, you have to create a more
elegant alternative to the shortcut supplied
here.

r

Application to the assignment15

NextHome Previous 26 o f 33

stop

check Products table to
ensure valid ProductID

error message stopvalid?

add new record with
CustID , ProductID & Qty

yes

yes

no

erItem subroutine.
. Advanced Triggers

start

update Qty stop

search BackOrders table for
matching CustID & ProductID

found?

check Customer table to
ensure valid CustID

error message stopvalid?

no

yes

no

FIGURE 15.16: Flowchart for the BackOrd

Application to the assignment15

NextHome Previous 27 o f 33

15

In
sh
co
co

15

Fu

Se

Di

db

Se

If

“Back order cannot be processed:
ontains no items”

rsBOItems.EOF

OrderItem(lngCustID,
ms!ProductID, rsBOItems!Qty)

s.MoveNext

s.Close

ction

Explanation of the
UpdateBackOrders() function

 UpdateBackOrders(ByVal lngOr-

ng, ByVal lngCustID As Long) —
ement declares the function and its parame-
h item in the parameter list contains three
: ByVal or ByRef (optional), the variable's
d the variable's type (optional). The ByVal
. Advanced Triggers

.4.4 Annotated source code for the
backorders shortcut module.

 the following sections, the two procedures in the
ortcut module are examined. In each case, the
de for the procedure is presented followed by
mments on specific lines of code.

.4.4.1 The UpdateBackOrders() function

nction UpdateBackOrders(ByVal
lngOrdID As Long, ByVal lngCustID As
Long)

t dbCurr = CurrentDb

m rsBOItems As Recordset

Curr.QueryDefs!pqryItemsToBackOrder.
Parameters!pOrderID = lngOrdID

t rsBOItems =
dbCurr.QueryDefs!pqryItemsToBackOrder
.OpenRecordset()

rsBOItems.RecordCount = 0 Then

MsgBox
order c

Exit Sub

End If

Do Until

Call Back
rsBOIte

rsBOItem

Loop

rsBOItem

End Fun

15.4.4.2

Function

dID As Lo

This stat
ters. Eac
elements
name, an

Application to the assignment15

NextHome Previous 28 o f 33

ke
va
its
be
va
va

Se

ab
tin
(w
to
ob

Cu

sio
cu
do
be
Ac
Se

Items As Recordset — In this decla-
tement, a pointer to a Recordset object is
. This recordset contains a list of all the
add to the BackOrders table.

ueryDefs!pqryItemsToBackOrder

ters!pOrderID = lngOrdID — This
bit tricky: the current database (dbCurr)
a collection of objects called QueryDefs
e what you create when you use the QBE
signer). Within the collection of QueryDefs,
ne called pqryItemsToBackOrder
u created in Section 15.4.2.1).

ery QueryDef, there is a collection of zero
arameters . In this case, there is one called
 and this sets the value of the parameter

lue of the variable lngOrderID (which was
o the function as a parameter).

Items = dbCurr.QueryDefs!pqry-

ackOrder.OpenRecordset() — Here
. Advanced Triggers

yword simply means that a copy of the variables
lue is passed the subroutine, not the variable
elf. As a result, variables passed by value cannot
 changed by the sub-procedure. In contrast, if a
riable is passed by reference (the default), its
lue can be changed by the sub-procedure.

t dbCurr = CurrentDb — Declaring a vari-
le and setting it to be equal to something are dis-
ct activities. In this case, the variable dbCurr
hich is declared in the declarations section) is set
 point to a database object. Note that the database
ject is not created, it already exists.

rrentDb is a function supported in Access ver-
n 7.0 and higher that returns a reference to the
rrent database. In Access version 2.0, this function
es not exist and thus the current database must
 found by starting at the top level object in the
cess DAO hierarchy, as discussed in
ction 14.3.1.

Dim rsBO

ration sta
declared
items to

dbCurr.Q

.Parame

one is a
contains
(these ar
query de
there is o
(which yo

Within ev
or more P
pOrderID

to the va
passed t

Set rsBO

ItemsToB

Application to the assignment15

NextHome Previous 29 o f 33

is
rs

Un
th
by
te

O

ob
im
qu
pa
re
ite
pO

If

on
Re
ze

“Back order cannot be processed:

tains no items” — The MsgBox
t pops up a standard message box with an
ton in the middle.

 — If this line is reached, the list contains
. As such, there is no need to go any further
broutine.

— The syntax for If… Then… Else… state-
quires an End If statement at the end of
itional code. That is, everything between the
e End If executes if the condition is true;
, the whole block of code is ignored.

rsBOItems.EOF — The EOF property
rdset is set to true when the “end of file” is
red.

OrderItem(lngCustID, rsBOI-

ductID, rsBOItems!Qty) — A sub-
 used to increase the modularity and
. Advanced Triggers

another set statement. In this one, the variable
BOItems is set to point at a recordset object.
like the current database object above, however,

is recordset does not yet exist and must be created
 running the pqryItemsToBackOrder parame-
r query.

penRecordset is a method that is defined for
jects of type TableDef or QueryDef that creates an
age of the data in the table or query. Since the
ery in question is a parameter query, and since the
rameter query is set in the previous statement, the
sulting recordset consists of a list of backordered
ms with an order number equal to the value of
rderID .

rsBOItems.RecordCount = 0 Then — The
ly thing you need to know at this point about the
cordCount property of a recordset is that it returns
ro if the recordset is empty.

MsgBox

order con

statemen
Okay but

Exit Sub

no items
in this su

End If
ments re
the cond
If and th
otherwise

Do Until

of a reco
encounte

Call Back

tems!Pro

routine is

Application to the assignment15

NextHome Previous 30 o f 33

re
cu
rs

rs

de
EO

lo
al

Lo

wi

rs

ob
Re

in
db

En

an

The BackOrderItem() subroutine

kOrderItem(ByVal lngCustID As
yVal strProdID As String, ByVal
s Integer)

rr = CurrentDb

earch As String

ckOrders As Recordset

ckOrders =
.OpenRecordset(“BackOrders”,
nDynaset)

 = “CustID = “ & lngCustID & “
roductID = '" & strProdID & “'”

rders.FindFirst strSearch

Orders.NoMatch Then

stomers As Recordset

stomers =
.OpenRecordset(“Customers”,
nDynaset)

 = “CustID = “ & lngCustID

ers.FindFirst strSearch
. Advanced Triggers

adability of this function. Note the way in which the
rrent values of ProductID and Qty from the
BOItems Recordset are accessed.

BOItems.MoveNext — MoveNext is a method
fined for recordset objects. If this is forgotten, the
F condition will never be reached and an infinite

op will be created. In VBA, the Escape key is usu-
ly sufficient to stop an infinite loop.

op — All Do While /Do Until loops must end
th the Loop statement.

BOItems.Close — When you create a new
ject (such as a Recordset using the Open-

cordset method), you should close it before exit-
g the procedure. Note that you do not close
Curr because you did not open it.

d Function — All functions/subroutines need
 End Function /End Sub statement.

15.4.4.3

Sub Bac
Long, B
intQty A

Set dbCu

Dim strS

Dim rsBa

Set rsBa
dbCurr
dbOpe

strSearch
AND P

rsBackO

If rsBack

Dim rsCu

Set rsCu
dbCurr
dbOpe

strSearch

rsCustom

Application to the assignment15

NextHome Previous 31 o f 33

If

M

Ex

En

Di

Se

st

rs

If

M

Ex

En

rs

rs

rs

rders!Qty = intQty

rders.Update

rders.Edit

rders!Qty = rsBackOrders!Qty +

rders.Update

Explanation of the BackOrderItem()
subroutine

ny aspects of the language are covered in
ous subroutine, only those that are unique
broutine are explained.

ckOrders = dbCurr.OpenRecord-

Orders”, dbOpenDynaset) — The
ordset method used here is the one

or a Database object. The most important
t is the source of the records, which can be
. Advanced Triggers

rsCustomers.NoMatch Then

sgBox “An invalid Customer ID number
has been passed to BackOrderItem”

it Sub

d If

m rsProducts As Recordset

t rsProducts =
dbCurr.OpenRecordset(“Products”,
dbOpenDynaset)

rSearch = “ProductID = '" & strProdID
& “'”

Products.FindFirst strSearch

rsProducts.NoMatch Then

sgBox “An invalid Product ID number
has been passed to BackOrderItem”

it Sub

d If

BackOrders.AddNew

BackOrders!CustID = lngCustID

BackOrders!ProductID = strProdID

rsBackO

rsBackO

Else

rsBackO

rsBackO
intQty

rsBackO

End If

End Sub

15.4.4.4

Since ma
the previ
to this su

Set rsBa

set(“Back

OpenRec

defined f
argumen

Application to the assignment15

NextHome Previous 32 o f 33

a
Th
st
dy
ex
is
7.
fo

st

AN

A
pr
co
fo
is
is
Pr

th

ingle quotes are used within the search

rders.FindFirst strSearch —
 is a method defined for Recordset

at finds the first record that meets the crite-
ied in the method's argument. Its argument
t string stored in strSearch .

Orders.NoMatch Then — The
 property should always be checked after

g a record set. Since it is a Boolean variable
alse) it can be used without an comparison

rders.AddNew — Before information can
 to a table, a new blank record must be cre-
 AddNew method creates a new empty
akes it the active record, and enables it for
. Advanced Triggers

table name, a query name, or an SQL statement.
e dbOpenDynaset argument is a predefined con-

ant that tells Access to open the recordset as a
naset. You don't need to know much about this
cept that the format of these predefined constants
different between Access version 2.0 and version
0 and higher. In version 2.0, constants are of the
rm: DB_OPEN_DYNASET.

rSearch = “CustID = ”& lngCustID & “

D ProductID = ’” & strProdID & “'” —
string variable has been used to break the search
ocess into two steps. First, the search string is
nstructed; then the string is used as the parameter
r the FindFirst method. The only tricky part here
that lngCustID is a long integer and strProdID
a string. The difference is that the value of str-

odID has to be enclosed in quotation marks when
e parameter is passed to the FindFirst method. To

do this, s
string.

rsBackO

FindFirst

objects th
ria specif
is the tex

If rsBack

NoMatch

searchin
(True / F
operator.

rsBackO

be added
ated. The
record, m
editing.

Application to the assignment15

NextHome Previous 33 o f 33

rs

th
ca
re
su

rs

m
in
Ed

ar

rs

th
ch
th
. Advanced Triggers

BackOrders!CustID = lngCustID — Note
e syntax for changing a variable’s value. In this
se, the null value of the new empty record is
placed with the value of a variable passed to the
broutine.

BackOrders.Update — After any changes are
ade to a record, the Update method must be
voked to “commit” the changes. The AddNew /
it and Update methods are like bookends

ound changes made to records.

BackOrders.Edit — The Edit method allows
e values in a record to be changed. Note that these
anges are not saved to the underlying table until
e Update method is used.

	15.1 Introduction: Pulling it all together
	15.2 Learning objectives
	15.3 Tutorial exercises
	15.3.1 Using a macro to run VBA code
	15.3.2 Using activity information to determine the...
	15.3.3 Use an unbound combo box to automate search...
	15.3.4 Using Visual Basic code instead of a macro

	15.4 Application to the assignment
	15.4.1 Triggers to help the user
	15.4.2 Updating the BackOrders table
	15.4.3 Understanding the UpdateBackOrders() functi...
	15.4.4 Annotated source code for the backorders sh...

