Access Tutorial 15: Advanced Tri

15.1 Introduction: Pulling it all
together

In this tutorial, you will bring together several of the
skills you have learned in previous tutorials to imple-
ment some sophisticated triggers.

15.2 Learning objectives
O How do | run VBA code using a macro?

O How do | use the value in one field to
automatically suggest a value for a different
field?

O How do | change the table or query a form is
bound to once the form is already created?

O What is the After Update event? How is it
used?

O How do | provide a search capability for my
forms?

© Michael Brydon (brydon@unixg.ubc.ca)
Last update: 25-Aug-1997

ggers

O How do | create an unbound combo box?

O Can | implement the search capability using
Visual Basic?

15.3 Tutorial exercises

15.3.1 Using a macro to run VBA code

There a some things that cannot be done using the
Access macro language. If the feature you wish to
implement is critical to your application, then you
must implement it using VBA. However, since it is
possible to call a VBA function from within a macro,
you do not have to abandon the macro language
completely.

In this section, you are going to execute the Param-
eterTest subroutine you created in Section 12.3.6
from within a macro. Since the RunCode action of
the Access macro language can only be used to exe-

10f33

M Home | [4Previous | [Next P |

15. Advanced Triggers

cute functions (not subroutines) you must do one of
two things before you create the macro:

1. Convert ParameterTest to afunction — you do
this simply by changing the Sub at the start of the
procedure to Function

2. Create a new function that executes Parame-
terTest and call the function from the macro.

15.3.1.1 Creating a wrapper

Since the second alternative is slightly more interest-
ing, it is the one we will use.
« Open your basTesting module from
Tutorial 12.
» Create a new function called ParameterTest-
Wrapper defined as follows:
Function
ParameterTestWrapper(intStart As
Integer, intStop As Integer) As
Integer

Tutorial exercises

'this function calls the
ParameterTest subroutine

ParameterTest intStart, intStop

ParameterTestWrapper = True
'return a value

End Function
* Call the function, as shown in Figure 15.1.

Note that the return value of the function is
declared as an integer, but the actual assign-
ment statement is ParameterTestWrap-

per =True . Thisis because in Access/
VBA, the constants True and False are
defined as integers (-1 and 0 respectively).

15.3.1.2 Using the RunCode action

» Leave the module open (you may have to resize
and/or move the debug window) and create a
new macro called mcrRunCodeTest .

|ﬁHome | I4dPrevious | 20f33 [Next P |

15. Advanced Triggers Tutorial exercises

FIGURE 15.1: Create a function that calls the ParameterTest subroutine.

- basTesting : Module
Ohject: I(General) j Froc: IPﬂrﬂmeterTestWrapper

Function ParameterTestWrapper(intStart As Integer, intStop As Integer)
‘this function calls the ParameterTest subroutine
ParameterTest intStart, intStop

ParameterTestliggpper = True ‘return a value
End Function
B Debug Window

= Create a function to call |<F79ady>

theParameterTest
subroutine. ? ParameterTestWrapper(18,15)
Loop number: 10
Loop number: 11 .
. | Loop number: 12 Use thePrint statement to
@ SinceParametertest Loop number. 13 invoke the function (do not forget
does not return a value, its L P ber. 14 the parameters).
arguments are not in oop number :
brackets. Loop number: 15
All done

True The return value of
ParameterTestWrapper()

is True, so this is printed when

the function ends.

M Home | [4Previous | 30f33 | NextP |

15. Advanced Triggers

« Add the RunCode action and use the expression
builder to select the correct function to execute,
as shown in Figure 15.2.

AN\

The expression builder includes two parame-
ter place holders (<<intStart>> and
<<intStop>>) in the function name. These
are to remind you that you must pass two
parameters to the ParameterTestWrap-

per() function. If you leave the place holders
where they are, the macro will fail because
Access has not idea what <<intStart>>

and <<intStop>> refer to.

» Replace the parameter place holders with two
numeric parameters (e.g. 3 and 6). Note that in
general, the parameters could be field names or
any other references to Access objects contain-
ing (in this case) integers.

Tutorial exercises

» Select Run > Start to execute the macro as
shown in Figure 15.3.

15.3.2 Using activity information to
determine the number of credits

In this section, you will create triggers attached to the
After Update event of bound controls.

15.3.2.1 Scenario

Assume that each type of course activity is generally
associated with a specific number of credits, as
shown below:

Activity Credits
lecture 3.0
lab 3.0
tutorial 1.0
seminar 6.0

|ﬁHome | I4dPrevious | 40f33 [Next P |

15. Advanced Triggers Tutorial exercises

FIGURE 15.2: Use the expression builder to select the function to execute.

a2 Add aRunCode

action to the macro. ; . -
\ Expression Builder
\ z mchunCudeest aLelE FarameterTestd/rapper («intStarts, «intStop:)
| Action
P |FunCode

e -0 *a]=> <o d or Not Like| ()]

Function Mame = Functions |baSDAOTESt
ttl Built-ln Functions
s

hasl_lilities

Note the<<intStart>> and
<<intStop>> parameter place
holders. These must be replaced
with expressions that Access
understands.

V4 |
‘b Use the expression builder to drill ParameterTestWrapper{intStart, intStop) y
down to the user-defined functions in '

your database file.

|ﬁHome | I4Previous | 50f33 [Next P |

15. Advanced Triggers

FIGURE 15.3: Execute the RunCode macro.

mcrRunCodeTest : Macro
| Action

| F |RunCode

Function Mame

FarameterTestd/rapper (3, B)

B Debug Window

|<Ready>

Loop number:
Loop number:
Loop number:
Loop number:
=| All done

Replace the
A parameter place
holders.

o E W

‘b SelectRun > Start (or press théicon in
the tool bar) to execute the macro.

Tutorial exercises

Assume as well that the number of credits for a par-
ticular type of course is not cast in stone. As such,
the numbers given above are merely “default” val-
ues.

You want to use the default credit values when you
create a new course or modify an existing course.
However, the user may override this default if neces-
sary for a particular course. The basic requirement is
illustrated in Figure 15.4.

15.3.2.2 Designing the trigger

Based on the foregoing, the answer to the “what”
question is the following:

1. Look up the default number of credits associated
with the course activity showing in the form’s
Activity field.

2. Copy this number into the Courses.Credits
field.

6 of 33

M Home | [4Previous | [Next P |

15. Advanced Triggers Tutorial exercises

FIGURE 15.4: Inserting a default value into a new record.

a2 Create a macro to find the default number

Create a new record for a lecture-based of credits and copy the value it into the

course: COMM 437: Database Technology Credits field.
E Courses B S | ¢ he i i ¢
Y o oMM elect “Lecture” from the list of list 0
iy ! C course activities created Trutorial 8.
Course number; |43?

»
e IDatabaSETECngy Activity | Description | Credits
Activity |Ledure -] Y [25 Lab 30
Credits: 0 LEC Lecture 3.0
| _— | |sEM Seminar 0

|| TuT Tutorig 1.0

il 0.0

Since this is a new record, the default L
value ofCredits (like any numeric

field) is zero. You want to use the d Once theActivity field is updated, the
information you just specified in the macro executes. The value in the
Activity field to automatically Credits field can be changed by the

look up the correct default number of user.
credits for a lecture course and insert
it in theCredits field.

|ﬁHome | I4Previous | 70f33 [Next P |

15. Advanced Triggers

There are several possible answers to the “when”
guestion (although some are better than others). For
example:

1. When the user enters the Credits field (the On
Enter event for Credits) — The problem with
this choice is that the user could modify the
course’s activity without moving the focus to the
Activity field. In such a case, the trigger would
not execute.

2. When the user changes the Activity field (the
After Update event for Activity) — This choice
guarantees that whenever the value of Activ-
ity is changed, the default value will be copied
into the Credits field. As such, it is a better
choice.

15.3.2.3 Preliminary activities
» Modify the Activities table to include a single-
precision numeric field called Credits . Add the
values shown in the table in Section 15.3.2.1.

Tutorial exercises

» Ensure that you have a courses form (e.g., frm-
Courses) and that the form has a combo box for
the Activity field. You may wish to order the
fields such that Activity precedes Credits in
the tab order (as shown in Figure 15.4).

é If your move fields around, remember to
adjust the tab order accordingly (recall
Section 8.3.4).

15.3.2.4 Looking up the default value

As you discovered in Section 14.3.5, Access has a
DLookUp() function that allows you to go to the
Activities table and find the value of Credits

for a particular value of Activity . A different
approach is to join the Activities table with the
Courses table in a query so that the default value of
credits is always available in the form. This is the
approach we will use here.

80f33

M Home | [4Previous | [Next P |

15. Advanced Triggers

« Ensure you have a relationship (in the main rela-
tionship window) between Courses.Activity
and Activities.Activity

« Create a new query called gryCoursesAnd-
Credits based on the Courses and Activi-
ties tables (see Figure 15.5).

@

Notice that you have two credits fields:
Courses.Credits (the actual number of
credits for the course) and Activi-

ties.Credits (the “default” or “suggested”
number of credits based on the value of
Activity). Access uses the <table
name>.<field name> notation whenever a
guery contains more than one field with the
same name.

Since you already have forms based on the
Courses table that expect a field called Credits
(rather than one called Courses.Credits), itis a

Tutorial exercises

FIGURE 15.5: Use a join to make the default
value available.

i=f qryCoursesAndCredits : Select Query

Field: | Courses *
Table: | Courses

Credits
Activities

o
Sh i=f gqryCoursesAndCredits : Select Query

Crite Courses.Credits | Activities.Credits| Departr
id 2 3 MUSC
= 3 3 COMM
| 4 3 COMM
= 3 3 COMM
| 3 3 MATH
|_ﬁHome | I4dPrevious | 90f33 [Next P |

15. Advanced Triggers Tutorial exercises

good idea to rename the Activities.Credits
field in the query. You do this by creating a calculated
field.

* Rename Activities.Credits to Default-
Credits as shown in Figure 15.6. Note that this
eliminates the need for the <table
name>.<field name> notation.

FIGURE 15.6: Rename one of the Credits fields.

&f qryCoursesAndCredits : Select Query

15.3.2.5 Changing the Record Source of the
form

Rather than create a new form based on the gry-

CoursesAndCredits query, you can modify the Field: [Courses> DetaultCredits: Cradits
Record Source property of the existing frmCourses Teple | Courses Activiles
form so it is bound to the query rather than the i e e 'D;f;ultm'eait; ' =
Courses table. or| [P 7 3 MUSC
* Bring up the property sheet for the frmCourses 3 3 COMM
form and change the Record Source property to 4 3 COMM
gryCoursesAndCredits as shown in 3 3] COMM
Figure 15.7. = RenameCredits form theActivities
table toDefaultCredits

|ﬁHome | I4dPrevious | 100f33 | Nextp |

15. Advanced Triggers Tutorial exercises

The advantage of using a join query in this manner is

FIGURE 15.7: Change the Record Source

tv of isting f that DefaultCredits Is now available for use
property o an existing form. within the form and within any macros or VBA mod-
a Bring up the form’s property list and ules that run when the form is open.
change itRecord Source property. _
. 15.3.2.6 Creating the SetValue macro
LR R A The SetValue macro you require here is extremely
[][Detai W Form simple once you have DefaultCredits available
- Depafimert | Fomat| Data] Event | Oher Al | within the scope of the form.
1 |HCause nurnbgr Eﬁgfrdsaurce ,,,,,,,,,, aryCouseshndCreds 1| « Create the mcrCourses.SetCredits macro
N ilfldEfE?f ----------- - as shown in Figure 15.8.
2 NS P Dw iters........ =k .
- ,J gila o Courses 15.3.2.7 Attaching a procedure to the After
- Credltﬂ Diefault Wiew Single Form
YWiews Allowed Bath Update event
Allow Edits res
Allow Delations ... “fos The On Click event of a button is fairly simple to
?tf““m Allow Additions ... Yes understand: the event occurs when the button is
e DataEntry Mo . . .
| credits Recordsct Type .. Dynaset clicked. The events associated with non-button
Activity Record Locks Mo Locks objects operate in exactly the same way. For exam-
DefaultCredits ScrollBars ... Both
@ The field list now contains all ple, the After Update event for controls (text box,
. the fields in the new query. combo box, check box, etc.) occurs when the value

|ﬁHome | I4dPrevious | 110f33 | Nextp |

15. Advanced Triggers

FIGURE 15.8: Create the SetValue macro.

a2 Create a macro group callettrCourses
and a named macro call&atCredits
mcrCourses : Macro

hacro Mame
P | SetCredits

Action
Sefvalue

[tern [Credits]

Expre ssiun/([DefaultCredits]

You can use the builder to set the arguments
or simply type in the names of the fields.

To

of the control is changed by the user. As a result, the
After Update event is often used to trigger data verifi-
cation procedures and “auto-fill” procedures like the
one you are creating here.

Tutorial exercises

macro to
field.

* Attach the mcrCourses.SetCredits
the After Update event of the Activity
* Verify that the trigger works properly.

15.3.3 Use an unbound combo box to
automate search

As mentioned in Tutorial 8, a combo box has no
intrinsic search capability. However, the idea of scan-
ning a short list of key values, selecting a value, and
having all the information associated with that record
pop on to the screen is so basic that in Access ver-
sion 7.0 and above, this capability is included in the
combo box wizard. In this tutorial, we will look at a
couple of different means of creating a combo boxes
for search from scratch.

15.3.3.1 Manual search in Access

To see how Access searches for records, do the fol-
lowing:

» Open your frmDepartments form.

12 of 33

M Home | [4Previous | [Next P |

15. Advanced Triggers

* Move to the field on which you want to search
(e.g., DeptCode);

» Select Edit > Find (or press Control-F);

* Fill out the search dialog box as shown in
Figure 15.9.

In the dialog box, you specify what to search for
(usually a key value) and specify how Access should
conduct its search. When you press Find First,
Access finds the first record that matches your
search value and makes it the current record (note
that if you are searching on a key field, the first
matching record is also the only matching record).

15.3.3.2 Preliminaries

To make this more interesting, assume that the frm-
Departments form is for viewing editing existing
departmental information (rather than adding new
departments). To enforce this limitation, do the fol-
lowing:

» Set the form’s Allow Additions property to No.

Tutorial exercises

» Set the Enabled property of DeptCode to No (the
user should never be able to change the key val-
ues of existing records).

15.3.3.3 Creating the unbound combo box

The key thing to remember about the combo box
used to specify the search criterion is that it has
nothing to do with the other fields or the underlying
table. As such, it should be unbound.
» Create an unbound combo box in the form
header, as shown in Figure 15.10.
» Change the Name property of the combo box to
cboDeptCode .
» The resulting combo box should resemble that
shown in Figure 15.11.

When you create an unbound combo box,
Access gives it a default name (e.qg.,
Combo5). You should do is change this to
something more descriptive (e.g., cboDept-

13 0f 33

M Home | [4Previous | [Next P |

15. Advanced Triggers

A

To

FIGURE 15.9: Search for a record using the “find” dialog box.

B Departments I] 3
Move the cursor to > | Deparment code |COMM
the field you_ wish to Oepatrment g |CDmmeru:e and Business Administr Update Credits
search and invoke —I
the search box Building |ANGU ¥ Credits updated?
usingControl-F. SN Find in field: 'Department cod’ BHE

Find Whaggy-{MUSC Find First
Enter the value you wish to fiM
- -] T MatchC :
and set the other search sarch: Al =l S ASE
parameters as requ”-ed . : [Search Fields As Formatted
Match: IWthE Field j v Search Only Current Field Ll |

B Departments

| —
Department co {e IMUSC

Department [|Musi|:

Update Credits |
Building IMUSC

b el [r¥] of 7 =

Limit the search to the current
field (i.e., the field with the
focus when the search box was
opened).

s upclated?

Presd-ind First to move to the first
(or only) record that matches the
search condition.

|ﬁHome | I4dPrevious | 140f33 | Nextp |

Tutorial exercises

15. Advanced Triggers

Tutorial exercises

FIGURE 15.10: Create an unbound combo box.

=2 Drag the separator for the detail
down to make room in the form DR L g L a1 5 1 G 1l 7 1 g:1l'9° 1191 1_|
header g_
_ \iarc fDradepanmEm| IUanund j
- | |
‘b Create an unbound combo box by || ¢ betil /
selecting the combo box tool and| "] —
clicking in the header area. =|[[DEEment goda]] it
] IDEHU I.IIII:II{II_AIIIE”DEptNamE e deate Credits ——
)] - Builging IEluiIdinn W Credits bipdated? |
Use the wizard in the usual way || - !
c # Form Footer

to get a list of valideptCode
values and descriptions. The

Combo Box Yizard
bound column for the combo bo>—

should beDeptCode .

Since the combo box is unbound,
its value has to be stored for later

use rather than stored in a field.

—

Microsoft Access can store the selected walue from your combo box
inyour database, or remember the value soyou can use it laterto
perform a task.

EEEEEHES - : B

:‘/y % Rememberthe value far later use.

HHHE HHHE : -
HiH HHH

HHHE HHH HHHE

—

vl

' Stare thatvalue in this fisld:

HEH HHHOHHE HEH
R NREORNE RN
HEH HHHOHHE HEH

rs

15 0f 33

| Next D |

| #ArHome | [{Previous |

15. Advanced Triggers

FIGURE 15.11: An unbound combo box.

Departments

Search for a deparment (a]yilggl=lg==X=\s{s § =]V strationjig

| Basket Waawving

IBETER =N S WY Commerce and Bus s Adrministration
Creative YWritin
Department name IBaskE Educatian 9

Building [ANG hEA”%LiSh
[=1

‘ husic

Although theDeptCode column has been
hidden, it is the “bound” column. As a result,

the value of the combo box as it appears here

is “COMM?”, not “Commerce and ...”

Code). The advantage of the prefix cbo is
that it allows you to differentiate between the
bound field DeptCode and the unbound
combo box.

Tutorial exercises

15.3.3.4 Automating the search procedure
using a macro

When we implement search functionality with a
combo box, only two things are different from the
manual search in Figure 15.9:

1. the search dialog box does not show up, and
2. the user selects the search value from the combo
box rather than typing it in.

The basic sequence of actions, however, remains
the same. As a result, the answer to the “what” ques-
tion is the following:

1. Move the cursor to the DeptCode field (this
allows the “Search Only Current Field” option to
be used, thereby drastically cutting the search
time).

2. Invoke the search feature using the current value
of cboDeptCode as the search value.

|ﬁHome | I4dPrevious | 160f33 | Nextp |

15. Advanced Triggers

3. Move the cursor back to cboDeptCode or some
other field.

The only problem with this procedure is that the
DeptCode text box is disabled. As a result, you must
include an extra step at the beginning of the macro
to set its Enabled property to Yes and another at the
end of the macro to return it to its original state.

» Create a new macro called mcrSearch.Find-
Department

» Use the SetValue action to set the Dept-
Code.Enabled property to Yes. This can be
done using the expression builder, as shown in
Figure 15.12.

» Use the GotoControl action to move the cursor
to the DeptCode text box. Note that this action
will fail if the destination control is disabled.

» Use the FindRecord action to implement the
search as shown in Figure 15.13.

Tutorial exercises

FIGURE 15.13: Fill in the arguments for the
FindRecord action.

= 1 Create a named macro called
mcrSearch.FindDepartment

mcrsearch - kdacro

kacro Mame Action

FindDepartment | Setvalue enakble the DeptCode field
GoToContral mowe to the DeptCode field
FindRecord search
Action Arguments
Find YWWhat =[choDeptCode] Value
hatch YWhole Field
kMatch Case Mo) .
Search Al SinceValue is
Search As Formated Mo the default
Only Current Fiel Yes property, its use
Find First res is optionaL

‘b Enter the action arguments. Do not forget the
equals sign before the name of the combo box.

17 of 33

M Home | [4Previous | [Next P |

15. Advanced Triggers

FIGURE 15.12: Use the builder to specify the name of the property to set.

a2 To set thdtem argument, use the
expression builder to drill down
to the correct form.

@ The middle pane shows all the

objects on the form including
labels and buttons (hence the ——
need for a good naming

convention).

‘b Select the unbound combo box

(cboDeptCode) from the middle
pane. A list of properties for the |
selected object is displayed in the
pane on the right.

Tutorial exercises

{ Expression Builder | X]
Formsl[frmDepartments][choDeptCode] Enabled ;I
Cancel |
_I Undo |
+ -1 *|a]=><o|And or Not Lke| ()] Paste | Help |
[# Tahles = |/ |<Farm> Defaultvalue =]
[Quenss <Field List> Displawiihen
& Farms Search for a departme
EvgntFrocPrefix
(1 Loaded Forms DeptCode Label FeBald [
W 11 D e partmients DeptCode Fpntitalic
¥ All Forms DeptMame Label ontMame
& Ropos Dept FantSize
o p. Building Lahel Fontlnderline
Funct | |Building Fantweight
4] | 3 cmdUpdateCredits | =] |ForeColor =]
7z
[#rtome | [€Previous | 18038 [[NextP]

15. Advanced Triggers

Access interprets any text in the Find What

A argument as a literal string (i.e., quotation
marks would not be required to find COMM To
use an expression (including the contents of a
control) in the Find What argument, you must
precede it with an equals sign (e.g.,
=[cboDeptCode]

* You cannot disable a control if it has the focus.
Therefore, include another GotoControl action
to move the cursor to cboDeptCode before set-
ting DeptCode.Enabled = No

 Attach the macro mcrSearch.FindDepart-
ment to the After Update event of the cboDept-
Code combo box.

 Test the search feature.

Tutorial exercises

15.3.4 Using Visual Basic code instead of
a macro

Instead of attaching a macro to the After Update
event, you can attach a VBA procedure. The VBA
procedure is much shorter than its macro counter-
part:

1. acopy (clone) of the recordset underlying the
form is created,

2. the FindFirst method of this recordset is used
to find the record of interest.

3. the “bookmark” property of the clone is used to
move to the corresponding bookmark for the
form.

To create a VBA search procedure, do the following:
» Change the After Update event of cbhoDeptCode
to “Event Procedure”.
* Press the builder (=) to create a VBA subrou-
tine.

|ﬁHome | I4dPrevious | 190f33 | Nextp |

15. Advanced Triggers

* Enter the two lines of code below, as shown in
Figure 15.14.
Me.RecordsetClone.FindFirst
“DeptCode = " & cboDeptCode & *”
Me.Bookmark =
Me.RecordsetClone.Bookmark
This program consists of a number of interesting ele-
ments:

» The property Merefers to the current form. You
can use the form's actual name, but Meis much
faster to type.

» A form’s RecordsetClone property provides a
means of referencing a copy of the form's under-
lying recordset.

* The FindFirst method is straightforward. It
acts, in this case, on the clone.

» Every recordset has a bookmark property that
uniquely identifies each record. A bookmark is
like a “record number”, except that it is stored as

Application to the assignment

a non-human-readable data type and therefore is
not of much use unless it is used in the manner
shown here. Setting the Bookmark property of a
record makes the record with that bookmark the
current record. In the example above, the book-
mark of the records underlying the form is set to
equal the bookmark of the clone. Since the clone
had its bookmark set by the search procedure,
this is equivalent to searching the recordset
underlying the form.

15.4 Application to the assignment

15.4.1 Triggers to help the user

» Create a trigger on your order form that sets the
actual selling price of a product to its default
price. This allows the user to accept the default
price or enter a new price for that particular trans-
action (e.g., the item could be damaged). You will

20 of 33

M Home | [4Previous | [Next P |

15. Advanced Triggers Application to the assignment

FIGURE 15.14: Implement the search feature using a short VBA procedure.

=g, Change théfter Update event to
Format| Deta | Event | Other Al | reference an event procedure.
Before Update -
IR LS oo Ceenroceduel =L] Press the builder button to invoke the VBA
OnChange [Event Procedure] \ di
On Motin List. ... merCourses I editor.
OnEnter. . morCourses. SetCredits
OnExit. merSearch .
On Got Focus mcrSearch FindDepant c Access automatically names the
OnLostFocus merlpdateCredits subroutine. Enter the two lines of code.
On Click mcrlJpdateCredits. Che
an Dbl C.Ii.c.l; """" morpdataCredits Upc «
On .- Form_frmDepartments : Module
COhject: |cboDeptCode } j Proc: IAﬂerUpdate j
Private Sub choDeptCode_aAfterUpdate() -
Me.RecordsetClone.FindFirst "DeptCode = '" & choDeptCode & "'"
Me.Bookmark = Me.RecordsetClone.Bookmark
End Sub

|ﬁHome | IdPrevious | 210f33 | Nexth |

15. Advanced Triggers

have to think carefully about which event to
attach this macro to.

 Create a trigger on your order form that calcu-
lates a suggested quantity to ship and copies this
value into the quantity to ship field. The sug-
gested value must take into account the amount
ordered by the customer, any outstanding backo-
rders for that item by that customer, and the cur-
rent quantity on hand (you cannot ship what you
do not have). The user should be able to override
this suggested value. (Hint: use the MinValue()
function you created in Section 12.5.)

* Provide you customer and products forms with
search capability.

15.4.2 Updating the BackOrders table

Once a sales order is entered into the order form, it
is a simple matter to calculate the amount of each
product that should be backordered (you did this in

Application to the assignment

Section 10.4). The problem is updating the Back-
Orders table itself because two different situations
have to be considered:

1. Arecord for the particular customer-product
combination exists inthe BackOrders table --
If a backorder record exists for a particular cus-
tomer and a particular product, the quantity field
of the record can be added-to or subtracted-from
as backorders are created and filled.

2. A customer-product record does not exist in
the BackOrders table -- If the particular cus-
tomer has never had a backorder for the product
in question, then there is no record in the Back-
Orders table to update. If you attempt to update
a nonexistent record, you will get an error.

What is required, therefore, is a means of determin-
ing whether a record already exists for a particular
customer-product combination. If a record does
exist, then it has to be updated; if a record does not

|ﬁHome | I4dPrevious | 22033 | Nextp |

15. Advanced Triggers

exist, then one has to be created. This is simple
enough to talk about, but more difficult to implement
in VBA. As a result, you are being provided with a
shortcut function called UpdateBackOrders()

that implements this logic.

The requirements for using the UpdateBackO-
rders() function are outlined in the following sec-
tions:

15.4.2.1 Create the pgryltemsToBackOrder
query

If you have not already done so, create the pqry-

ItemsToBackOrder query described in

Section 10.4. The UpdateBackOrders() proce-

dure sets the parameter for the query and then cre-

ates a recordset based on the results.

é If you did not use the field names OrderID
and ProductIlD in your tables, you must use
the calculated field syntax to rename them

Application to the assignment

(see Section 15.3.2.4 to review renaming
fields in queries).

Note that if the backordered quantity is positive,
items are backordered. If the backordered quantity is
negative, backorders are being filled. If the backor-
dered quantity is zero, no change is required and
these records should no be included in the results of
the query.

15.4.2.2

Import the Visual Basic for Applications (VBA) mod-

ule containing the code for the

UpdateBackOrders() function. This module is

contained in an Access database called

BOSC_W.mdb that you can download from the

course home page.

* BOSC_V2.mdbis for those running Access ver-

sion 2.0. To import the module, select File >

Import the shortcut function

23 0f33

M Home | [4Previous | [Next P |

15. Advanced Triggers Application to the assignment

Import, choose BOSC_V2.mdh and select Mod- ers , and Products . If any of your tables or fields

ule as the object type to import. are named differently, an error occurs. To eliminate
* BOSC_V7.mdbis for those running Access ver- these errors, you can do one of two of things:
sion 7.0 or higher. To import the module, select 1. Edit the VBA code. Use the search-and-replace
File > Get External Data > Import, choose feature of the module editor to replace all
BOSC_V7.mdh and select Module as the object instances of field names in the supplied proce-
type to import. dures with your own field names. This is the rec-
15.4.2.3 Use the function in your application ommended approach, although you need an

adequate understanding of how the code works
in order to know which names to change.
2. Change the field names in your tables (and all

The general syntax of the function call is:
UpdateBackOrders(OrderID, CustomerID)

The OrderlD and CustomerlD are arguments. and gueries and forms that reference these field

they both must be of the type Long Integer. If this names). This approach is not recommended.

function is called properly, it will update all the backo-

rdered items returned by the parameter query. 15.4.3 Understanding the

15.4.2.4 Modifying the UpdateBackOrders() UpdateBackOrders() function
function The flowchart for the UpdateBackOrders() func-

The UpdateBackOrders() function looks for spe- tion is shown in Figure 15.15. This function repeat-

cific fields in three tables: BackOrders , Custom- edly calls a subroutine, BackOrderltem , which

|ﬁHome | I4dPrevious | 240f33 | Nextp |

15. Advanced Triggers Application to the assignment

updates or adds the individual items to the BackO- FIGURE 15.15: Flowchart for
rders table. The flowchart for the BackOrderltem UpdateBackOrders()
subroutine is shown in Figure 15.16.

There are easier and more efficient ways of imple- @

menting routines to update the BackOrders table.
Although some amount of VBA code is virtually inev- run pgryltemsToBackOrder
itable, a great deal of programming can be elimi- to getlist of items to backorder

nated by using parameter queries and action
error message

gueries. Since queries run faster than code in
Access, the more code you replace with queries, the
better.

To get full marks for the backorders aspect of

the assignment, you have to create a more do until end of list

elegant alternative to the shortcut supplied y

here. call BackOrderltems
(CustID,ProductID,Qty)

|ﬁHome | I4dPrevious | 25033 | Nextp |

15. Advanced Triggers Application to the assignment

FIGURE 15.16: Flowchart for the BackOrderltem subroutine.

search BackOrders table for
yes

matching CustID & ProductID

check Products table to
yes .
ensure valid ProductIlD
update Qty
no no
check Customer table to error message

ensure valid CustID

yes

no add new record with
CustiD , ProductiD & Qty
error message

LM Home | [4Previous | 260f33 | NextP |

15. Advanced Triggers

15.4.4 Annotated source code for the
backorders shortcut module.

In the following sections, the two procedures in the
shortcut module are examined. In each case, the
code for the procedure is presented followed by
comments on specific lines of code.

15.4.4.1 The UpdateBackOrders()

Function UpdateBackOrders(ByVal
IngOrdID As Long, ByVal IngCustID As
Long)

Set dbCurr = CurrentDb

Dim rsBOIltems As Recordset

dbCurr.QueryDefs!pgryltemsToBackOrder.
Parameters!pOrderID = IngOrdID

Set rsBOltems =
dbCurr.QueryDefs!pgryltemsToBackOrder
.OpenRecordset()

If rsBOItems.RecordCount = 0 Then

function

Application to the assignment

MsgBox “Back order cannot be processed:
order contains no items”

Exit Sub
End If
Do Until rsBOltems.EOF

Call BackOrderltem(IngCustID,
rsBOIltems!ProductID, rsBOIltems!Qty)

rsBOIltems.MoveNext
Loop
rsBOIltems.Close

End Function

15.4.4.2 Explanation of the
UpdateBackOrders()

Function UpdateBackOrders(ByVal IngOr-

dID As Long, ByVal IngCustID As Long) —
This statement declares the function and its parame-
ters. Each item in the parameter list contains three
elements: ByVal or ByRef (optional), the variable's
name, and the variable's type (optional). The ByVal

function

27 of 33

M Home | [4Previous | [Next P |

15. Advanced Triggers

keyword simply means that a copy of the variables
value is passed the subroutine, not the variable
itself. As a result, variables passed by value cannot
be changed by the sub-procedure. In contrast, if a
variable is passed by reference (the default), its
value can be changed by the sub-procedure.

Set dbCurr = CurrentDb — Declaring a vari-
able and setting it to be equal to something are dis-
tinct activities. In this case, the variable dbCurr
(which is declared in the declarations section) is set
to point to a database object. Note that the database
object is not created, it already exists.

CurrentDb is a function supported in Access ver-
sion 7.0 and higher that returns a reference to the
current database. In Access version 2.0, this function
does not exist and thus the current database must
be found by starting at the top level object in the
Access DAO hierarchy, as discussed in

Section 14.3.1.

Application to the assignment

Dim rsBOIltems As Recordset — In this decla-
ration statement, a pointer to a Recordset object is
declared. This recordset contains a list of all the
items to add to the BackOrders table.

dbCurr.QueryDefs!pqryltemsToBackOrder
.Parameters!pOrderID = IngOrdID — This
one is a bit tricky: the current database (dbCurr)
contains a collection of objects called QueryDefs
(these are what you create when you use the QBE
guery designer). Within the collection of QueryDefs,
there is one called pgryltemsToBackOrder

(which you created in Section 15.4.2.1).

Within every QueryDef, there is a collection of zero

or more Parameters . In this case, there is one called
pOrderID and this sets the value of the parameter

to the value of the variable IngOrderID (which was
passed to the function as a parameter).

Set rsBOItems = dbCurr.QueryDefs!pqry-

ltemsToBackOrder.OpenRecordset() — Here

28 of 33

M Home | [4Previous | [Next P |

15. Advanced Triggers

is another set statement. In this one, the variable
rsBOItems is set to point at a recordset object.
Unlike the current database object above, however,
this recordset does not yet exist and must be created

by running the pqryltemsToBackOrder parame-
ter query.
OpenRecordset is a method that is defined for

objects of type TableDef or QueryDef that creates an
image of the data in the table or query. Since the
guery in question is a parameter query, and since the
parameter query is set in the previous statement, the
resulting recordset consists of a list of backordered
items with an order number equal to the value of
pOrderiD .

If rsBOltems.RecordCount = 0 Then — The
only thing you need to know at this point about the
RecordCount property of a recordset is that it returns
zero if the recordset is empty.

Application to the assignment

MsgBox “Back order cannot be processed:

order contains no items” — The MsgBox
statement pops up a standard message box with an
Okay button in the middle.

Exit Sub — If this line is reached, the list contains
no items. As such, there is no need to go any further
in this subroutine.

EndIf — The syntax for If... Then... Else... state-
ments requires an End If statement at the end of
the conditional code. That is, everything between the
If andthe End If executes if the condition is true;
otherwise, the whole block of code is ignored.

Do Until rsBOltems.EOF — The EOFproperty

of a recordset is set to true when the “end of file” is
encountered.

Call BackOrderltem(IngCustID, rsBOI-
tems!ProductID, rsBOIltems!Qty) — A sub-
routine is used to increase the modularity and

29 of 33

M Home | [4Previous | [Next P |

15. Advanced Triggers

readability of this function. Note the way in which the
current values of ProductID and Qty from the
rsBOIltems Recordset are accessed.

rsBOIltems.MoveNext — MoveNext is a method
defined for recordset objects. If this is forgotten, the
EOFcondition will never be reached and an infinite
loop will be created. In VBA, the Escape key is usu-
ally sufficient to stop an infinite loop.

Loop — All Do While /Do Until
with the Loop statement.

loops must end

rsBOIltems.Close = — When you create a new
object (such as a Recordset using the Open-
Recordset method), you should close it before exit-
ing the procedure. Note that you do not close
dbCurr because you did not open it.

— All functions/subroutines need
/End Sub statement.

End Function
an End Function

Application to the assignment

15.4.4.3 The BackOrderltem() subroutine

Sub BackOrderltem(ByVal IngCustID As
Long, ByValstrProdID As String, ByVal
intQty As Integer)

Set dbCurr = CurrentDb

Dim strSearch As String

Dim rsBackOrders As Recordset

Set rsBackOrders =
dbCurr.OpenRecordset(“BackOrders”,
dbOpenDynaset)

strSearch =“CustID =*“ & IngCustID & “
AND ProductID =™ & strProdID & *”

rsBackOrders.FindFirst strSearch
If rsBackOrders.NoMatch Then
Dim rsCustomers As Recordset

Set rsCustomers =
dbCurr.OpenRecordset(“Customers”,
dbOpenDynaset)

strSearch = “CustID = *“ & IngCustID

rsCustomers.FindFirst strSearch

30 0of 33

| #ArHome | [{Previous |

| Next D |

15. Advanced Triggers

If rsCustomers.NoMatch Then

MsgBox “An invalid Customer ID number
has been passed to BackOrderltem”

Exit Sub
End If
Dim rsProducts As Recordset

Set rsProducts =
dbCurr.OpenRecordset(“Products”,
dbOpenDynaset)

strSearch =“ProductID ="' & strProdID
& [11k}}

rsProducts.FindFirst strSearch
If rsProducts.NoMatch Then

MsgBox “An invalid Product ID number
has been passed to BackOrderltem”

Exit Sub

End If

rsBackOrders.AddNew
rsBackOrders!CustID = IngCustID
rsBackOrders!ProductID = strProdID

Application to the assignment

rsBackOrders!Qty = intQty

rsBackOrders.Update

Else

rsBackOrders.Edit

rsBackOrders!Qty = rsBackOrders!Qty +
intQty

rsBackOrders.Update

End If

End Sub

15.4.4.4 Explanation of the BackOrderltem()
subroutine

Since many aspects of the language are covered in
the previous subroutine, only those that are unique
to this subroutine are explained.

Set rsBackOrders = dbCurr.OpenRecord-
set(“BackOrders”, dbOpenDynaset) — The
OpenRecordset method used here is the one
defined for a Database object. The most important
argument is the source of the records, which can be

|ﬁHome | I4dPrevious | 310f33 | Nextp |

15. Advanced Triggers

a table name, a query name, or an SQL statement.
The dbOpenDynaset argument is a predefined con-
stant that tells Access to open the recordset as a
dynaset. You don't need to know much about this
except that the format of these predefined constants
is different between Access version 2.0 and version
7.0 and higher. In version 2.0, constants are of the
form: DB_OPEN_DYNASET

strSearch = “CustID = "& IngCustID & “

AND ProductID =" & strProdID & “” —
A string variable has been used to break the search
process into two steps. First, the search string is
constructed; then the string is used as the parameter
for the FindFirst method. The only tricky part here
is that IngCustID is a long integer and strProdID

is a string. The difference is that the value of str-
ProdID has to be enclosed in quotation marks when
the parameter is passed to the FindFirst method. To

Application to the assignment

do this, single quotes are used within the search
string.

rsBackOrders.FindFirst strSearch —
FindFirst is a method defined for Recordset
objects that finds the first record that meets the crite-
ria specified in the method's argument. Its argument
is the text string stored in strSearch

If rsBackOrders.NoMatch Then — The
NoMatch property should always be checked after
searching a record set. Since it is a Boolean variable
(True / False) it can be used without an comparison
operator.

rsBackOrders.AddNew — Before information can
be added to a table, a new blank record must be cre-
ated. The AddNewmethod creates a new empty
record, makes it the active record, and enables it for
editing.

32 0f 33

M Home | [4Previous | [Next P |

15. Advanced Triggers Application to the assignment

rsBackOrders!CustID = IngCustID — Note
the syntax for changing a variable’s value. In this
case, the null value of the new empty record is
replaced with the value of a variable passed to the
subroutine.

rsBackOrders.Update — After any changes are
made to a record, the Update method must be
invoked to “commit” the changes. The AddNew /
Edit and Update methods are like bookends
around changes made to records.

rsBackOrders.Edit — The Edit method allows
the values in a record to be changed. Note that these
changes are not saved to the underlying table until
the Update method is used.

|ﬁHome | I4dPrevious | 330f33 | Nexth |

	15.1 Introduction: Pulling it all together
	15.2 Learning objectives
	15.3 Tutorial exercises
	15.3.1 Using a macro to run VBA code
	15.3.2 Using activity information to determine the...
	15.3.3 Use an unbound combo box to automate search...
	15.3.4 Using Visual Basic code instead of a macro

	15.4 Application to the assignment
	15.4.1 Triggers to help the user
	15.4.2 Updating the BackOrders table
	15.4.3 Understanding the UpdateBackOrders() functi...
	15.4.4 Annotated source code for the backorders sh...

