Access Tutorial 12: An Introduction to Visual Basic

12.1 Introduction: Learning the
basics of programming

Programming can be an enormously complex and
difficult activity. Or it can be quite straightforward. In
either case, the basic programming concepts remain
the same. This tutorial is an introduction to a handful
of programming constructs that apply to any “third
generation” language, not only Visual Basic for
Applications (VBA).

é Strictly speaking, the language that is
included with Access is not Visual Basic—it is

a subset of the full, stand-alone Visual Basic
language (which Microsoft sells separately).
In Access version 2.0, the subset is called
“Access Basic”. In version 7.0, it is slightly
enlarged subset called “Visual Basic for Appli-
cations” (VBA). However, in the context of the

© Michael Brydon (brydon@unixg.ubc.ca)
Last update: 25-Aug-1997

simple programs we are writing here, these
terms are interchangeable.

12.1.1 Interacting with the interpreter

Access provides two ways of interacting with the
VBA language. The most useful of these is through
saved modules that contain VBA procedures. These
procedures (subroutines and functions) can be run to
do interesting things like process transactions
against master tables, provide sophisticated error
checking, and so on.

The second way to interact with VBA is directly
through the interpreter. Interpreted languages are
easier to experiment with since you can invoke the
interpreter at any time, type in a command, and
watch it execute. In the first part of this tutorial, you
are going to invoke Access’ VBA interpreter and exe-
cute some very simple statements.

10of16

M Home | [4Previous | [Next P |

12. An Introduction to Visual Basic

In the second part of the tutorial, you are going to
create a couple of VBA modules to explore looping,
conditional branching, and parameter passing.

12.2 Learning objectives

O What is the debug/immediate window? How
do I invoke it?

O What are statements, variables, the
assignment operator, and predefined
functions?

O How do I create a module containing VBA
code?

O What are looping and conditional branching?
What language constructs can | use to
implement them?

a

How do | use the debugger in Access?

Q

What is the difference between an interpreted
and compiled programming language?

Learning objectives
12.3 Tutorial exercises

12.3.1 Invoking the interpreter

* Click on the module tab in the database window
and press New.

This opens the module window which we will use in
Section 12.3.3. You have to have a module window
open in order for the debug window to be available
from the menu.

» Select View > Debug Window from the main
menu. Note that Control-G can be used in ver-
sion 7.0 and above as a shortcut to bring up the
debug window.

In version 2.0, the “debug” window is called
the “immediate” window. As such, you have to
use View > Immediate Window. The term
debug window will be used throughout this
tutorial.

M Home | [4Previous | 20f16 | Nextp |

12. An Introduction to Visual Basic

12.3.2 Basic programming constructs

In this section, we are going to use the debug win-
dow to explore some basic programming constructs.

12.3.2.1 Statements

Statements are special keywords in a programming
language that do something when executed. For
example, the Print statement in VBA prints an
expression on the screen.
* In the debug window, type the following:
Print “Hello world!” O

(the O symbol at the end of a line means “press the
Return or Enter key”).

@

In VBA (as in all dialects of BASIC), the ques-
tion mark (?) is typically used as shorthand for
the Print
? “Hello world!”

statement above.

Ois identical to the

statement. As such, the statement:

Tutorial exercises

12.3.2.2 Variables and assignment

A variable is space in memory to which you assign a
name. When you use the variable name in expres-
sions, the programming language replaces the vari-
able name with the contents of the space in memory
at that particular instant.
* Type the following:

s = “Hello” O

? s & “ world” 0

? “s” & “world” 0
In the first statement, a variable s is created and the

string Hello is assigned to it. Recall the function of
the concatenation operator (&) from Section 4.4.2.

@

Contrary to the practice in languages like C
and Pascal, the equals sign (=) is used to
assign values to variables. It is also used as
the equivalence operator (e.g., doesx=y ?).

3o0f16

M Home | [4Previous | [Next P |

12. An Introduction to Visual Basic

When the second statement is executed, VBA recog-
nizes that s is a variable, not a string (since it is not
in quotations marks). The interpreter replaces s with
its value (Hello) before executing the Print com-
mand. In the final statement, s is in quotation marks
so it is interpreted as a literal string .

Within the debug window, any string of char-
A acters in quotations marks (e.g., “COMM) is
interpreted as a literal string. Any string with-
out quotation marks (e.g., COMMs interpreted
as a variable (or a field name, if appropriate).
Note, however, that this convention is not uni-
versally true within different parts of Access.

12.3.2.3 Predefined functions

In computer programming, a function is a small pro-
gram that takes one or more arguments (or param-
eters) as input, does some processing, and returns
a value as output. A predefined (or built-in) function

Tutorial exercises

Is a function that is provided as part of the program-
ming environment.

For example, cos(x) is a predefined function in
many computer languages—it takes some number x
as an argument, does some processing to find its
cosine, and returns the answer. Note that since this
function is predefined, you do not have to know any-
thing about the algorithm used to find the cosine, you
just have to know the following:

1. what to supply as inputs (e.g., a valid numeric
expression representing an angle in radians),

2. what to expect as output (e.g., a real number
between -1.0 and 1.0).

@

The on-line help system provides these two
pieces of information (plus a usage example
and some additional remarks) for all VBA pre-
defined functions.

4 0f 16

M Home | [4Previous | [Next P |

12. An Introduction to Visual Basic

In this section, we are going to explore some basic
predefined functions for working with numbers and
text. The results of these exercises are shown in
Figure 12.1.
* Print the cosine of 2mtradians:
pi =3.14159 O
? cos(2*pi) O
» Convert a string of characters to uppercase:
s = “basic or cobol” O
? UCase(s) O
 Extract the middle six characters from a string
starting at the fifth character:
? mid (s,5,6) 0

12.3.2.4 Remark statements

When creating large programs, it is considered good

programming practice to include adequate internal
documentation—that is, to include comments to
explain what the program is doing.

Tutorial exercises

FIGURE 12.1: Interacting with the Visual Basic

interpreter.

B Debug Window

|<F’ieady>
pi = 3.14159 _
? cos(2xpi) The argument contains
0.999999999985917 ~®— an expression.
s = "basic or cobol"”
? UCase(s) UCase() converts a
BASIC OR COBOL < string to uppercase.

? mid (s,5,86)

c or ¢ Mid() extracts

characters from the
string defined earlier.

|ﬁHome | I4Previous | 50f16 [Next P |

12. An Introduction to Visual Basic

Comment lines are ignored by the interpreter when
the program is run. To designate a comment in VBA,
use an apostrophe to start the comment, e.g.:

‘ This is a comment line!

Print “Hello” ‘the comment starts

here

The original REM (remark) statement from BASIC
can also be used, but is less common.

REM This is also a comment (remark)

12.3.3 Creating a module

* Close the debug window so that the declaration
page of the new module created in
Section 12.3.3 is visible (see Figure 12.2).

The two lines:

Option Compare Database

Option Explicit

are included in the module by default. The Option
Compare statement specifies the way in which

Tutorial exercises

FIGURE 12.2: The declarations page of a Visual
Basic module.

% Modulel : Module [_ (O] =]

Object: I(General) j Proc: I(declaratiuns)

Option Compare Database -]
Option Explicit

strings are compared (e.g., does uppercase/ lower-
case matter?). The Option Explicit statement

forces you to declare all your variables before using
them.

In version 2.0, Access does not add the
Option Explicit statement by default. As
such you should add it yourself.

6 of 16

M Home | [4Previous | [Next P |

12. An Introduction to Visual Basic

A module contains a declaration page and one or
more pages containing subroutines or user-defined
functions . The primary difference between subrou-
tines and functions is that subroutines simply exe-
cute whereas functions are expected to return a
value (e.g., cos()). Since only one subroutine or
function shows in the window at a time, you must
use the Page Up and Page Down keys to navigate
the module.

The VBA editor in version 8.0 has a number of
enhancements over earlier version, including
the capability of showing multiple functions
and subroutines on the same page.

Tutorial exercises

12.3.4 Creating subroutines with looping
and branching

In this section, you will explore two of the most pow-
erful constructs in computer programming: looping
and conditional branching
 Create a new subroutine by typing the following
anywhere on the declarations page:
Sub LoopingTest() 0

Notice that Access creates a new page in the mod-
ule for the subroutine, as shown in Figure 12.3.

12.3.4.1 Declaring variables

When you declare a variable, you tell the program-
ming environment to reserve some space in memory
for the variable. Since the amount of space that is
required is completely dependent on the type of data
the variable is going to contain (e.g., string, integer,
Boolean, double-precision floating-point, etc.), you

7 of 16

M Home | [4Previous | [Next P |

12. An Introduction to Visual Basic

FIGURE 12.3: Create a new subroutine.

% Modulel : Module =] E3
Object |(General) | Proc [LoopingTest
Sub LoopingTest() A
End Sub

@ You can use the procedure
combo box to switch between
procedures in a module.

have to include data type information in the declara-
tion statement.

In VBA, you use the Dim statement to declare vari-
ables.
» Type the following into the space between the
Sub... End Sub pair:
Dim i as integer
Dim s as string

Tutorial exercises

» Save the module as basTesting

One of the most useful looping constructs is For
<condition>... Next . All statements between
the For and Next parts are repeated as long as the
<condition> partis true. The index i is automati-
cally incremented after each iteration.
» Enter the remainder of the LoopingTest pro-
gram:
s = “Loop number: ”
Fori=1To 10
Debug.Print s & i
Next i
» Save the module.

@ It is customary in most programming lan-
guages to use the Tab key to indent the ele-
ments within a loop slightly. This makes the
program more readable.

|ﬁHome | I4Previous | 80f16 [Next P |

12. An Introduction to Visual Basic

Note that the Print statement within the subroutine
is prefaced by Debug. This is due to the object-ori-
ented nature of VBA which will be explored in greater
detalil in Tutorial 14.

12.3.4.2 Running the subroutine

Now that you have created a subroutine, you need to
run it to see that it works. To invoke a subroutine, you
simply use its name like you would any statement.
» Select View > Debug Window from the menu (or
press Control-G in version 7.0).
» Type: LoopingTest [in the debug window, as
shown in Figure 12.4.

12.3.4.3 Conditional branching

We can use a different looping construct, Do Until
<condition>... Loop , and the conditional
branching construct, If <condition> Then...

Else , to achieve the same result.

FIGURE 12.4: Run the L

Tutorial exercises

oopingTest

subroutine in the debug window.

- basTesting : Module
Ohject: I(General) j

Froc: ILuupingTest

Sub LoopingTest()

B Debug Window

Dim i As Integer
Dim s As String

I<Ready>

s "Loop number: “
For i = 1 To 10
Hext i

End Sub

Invoke thelL.oopingTest
a e

LoopingTest
Loop number:
Loop number:
Loop number:
Debug.Print s/& 1 | Loop number:
Loop number:
Loop number:
Loop number:
Loop number:
Loop number:
Loop number:

= WO WV =IO EWMN =

subroutine

by typing its name in the debug window.

| #ArHome | [{Previous |

9016 [Nexid]

12. An Introduction to Visual Basic

* Type the following anywhere under the End Sub
statement in order to create a new page in the
module:

Sub BranchingTest [

» Enter the following program:
Dim i As Integer
Dim s As String
Dim intDone As Integer
s = “Loop number: “
i=1
intDone = False
Do Until intDone = True

Ifi >10 Then
Debug.Print “All done”
intDone = True

Else
Debug.Print s & i
i=i+1

End If

Tutorial exercises

Loop
* Run the program

12.3.5 Using the debugger

Access provides a rudimentary debugger to help you
step through your programs and understand how
they are executing. The two basic elements of the
debugger used here are breakpoints and stepping
(line-by-line execution).

» Move to the s ="“Loop number:” line in your
BranchingTest subroutine and select Run >
Toggle Breakpoint from the menu (you can also
press F9to toggle the breakpoint on a particular
line of code).

Note that the line becomes highlighted, indicating the
presence of an active breakpoint. When the program
runs, it will suspend execution at this breakpoint and
pass control of the program back to you.

|ﬁHome | I4dPrevious | 100f16 | Nextp |

12. An Introduction to Visual Basic

* Run the subroutine from the debug window, as
shown in Figure 12.5.
 Step through a couple of lines in the program
line-by-line by pressing F8.
By stepping through a program line by line, you can
usually find any program bugs. In addition, you can
use the debug window to examine the value of vari-
ables while the program’s execution is suspended.
« click on the debug window and type
?i 0O
to see the current value of the variable i .

12.3.6 Passing parameters

In the BranchingTest subroutine, the loop starts
at 1 and repeats until the counter i reaches 10. It
may be preferable, however, to set the start and fin-
ish quantities when the subroutine is called from the
debug window. To achieve this, we have to pass
parameters (or arguments) to the subroutine.

Tutorial exercises

FIGURE 12.5: Execution of the subroutine is
suspended at the breakpoint.

- basTesting : Module
Ohject: I(General) j

Proc: IBrﬁnchingTest

Sub BranchingTest() El

[[univ0_v7 mdb] basTest

Dim i As Integer
Dim s As String
Dim intDone As Integer

BranchingTest

ls = "Loop number: "

i 1
intDone = False

Do Until intD¢

The outlined box indicates the
current location of the

1 1D:bla interpreter in the program. Press
intngf F8 to execute the line of code.

Else
Debug.Print s & i

11 of 16

M Home | [4Previous | [Next P |

12. An Introduction to Visual Basic

The main difference between passed parameters
and other variables in a procedure is that passed
parameters are declared in the first line of the sub-
routine definition. For example, following subroutine
declaration

Sub BranchingTest(intStart as

Integer, intStop as Integer)

not only declares the variables intStart and
intStop as integers, it also tells the subroutine to
expect these two numbers to be passed as parame-
ters.

To see how this works, create a new subroutine
called ParameterTest based on Branch-
ingTest
» Type the declaration statement above to create
the ParameterTest subroutine.
» Switch back to BranchingTest and highlight all
the code except the Sub and End Sub state-
ments, as shown in Figure 12.6.

Tutorial exercises

FIGURE 12.6: Highlight the code to copy it.

Ohject: I(Generﬁl)

Sub BranchingTest()

Dim i As Integer
Dim s As String
Dim intDone As Integer

“Loop number: “

Do Until intDone = True
If i > 10 Then

|ﬁHome | I4dPrevious | 120f16 | Nextp |

12. An Introduction to Visual Basic

« Copy the highlighted code to the clipboard (Con-
trol-Insert), switch to ParameterTest , and
paste the code (Shift-Insert) into the Parame-
terTest procedure.

To incorporate the parameters into ParameterT-
est , you will have to make the following modifica-
tions to the pasted code:
* Replacei=1 withi=intStart
* Replacei>10 withi> intStop
* Call the subroutine from the debug window by
typing:
ParameterTest 4, 12 U

@ If you prefer enclosing parameters in brack-
ets, you have to use the Call <sub

name>(parameter 4, ..., parameter n)
syntax. For example:
Call ParameterTest(4,12) O

Tutorial exercises

12.3.7 Creating the Min() function

In this section, you are going to create a user-
defined function that returns the minimum of two
numbers. Although most languages supply such a
function, Access does not (the Min() and Max()
function in Access are for use within SQL statements
only).
» Create a new module called basUtilities
* Type the following to create a new function:
Function MinValue(nl as Single, n2
as Single) as Single O
This defines a function called MinValue that returns
a single-precision number. The function requires two
single-precision numbers as parameters.

Since a function returns a value, the data type

@ of the return value should be specified in the
function declaration. As such, the basic syn-
tax of a function declaration is:

13 0f 16

M Home | [4Previous | [Next P |

12. An Introduction to Visual Basic

Function <function

name>(parameter ; As <data type>,
..., parameter |, As <data type>) As
<data type>

The function returns a variable named
<function name>

» Type the following as the body of the function:

If n1 <=n2 Then
MinValue = nl
Else
MinValue = n2
End If
* Test the function, as shown in Figure 12.7.

Discussion
12.4 Discussion

12.4.1 Interpreted and compiled
languages

VBA is an interpreted language . In interpreted lan-
guages, each line of the program is interpreted (con-
verted into machine language) and executed when
the program is run. Other languages (such as C,
Pascal, FORTRAN, etc.) are compiled , meaning
that the original (source) program is translated and
saved into a file of machine language commands.
This executable file is run instead of the source
code.

Predictably, compiled languages run much faster
then interpreted languages (e.g., compiled C++ is
generally ten times faster than interpreted Java).
However, interpreted languages are typically easier
to learn and experiment with.

|ﬁHome | I4dPrevious | 140f16 | Nextp |

12. An Introduction to Visual Basic Discussion

FIGURE 12.7: Testing the MinValue() function.

Implement theMiinValue()

S & fynction using conditional branchi
Object |(General) x| Proc |MinValue
Function MipWalue(nl As Single, n2 As Single) As Single b Test the function by passing it
) various parameter values.
If n1 <= n2 Then &1 Debug Window
MinUalue = n1 Feady> |
Else | . e _I
MinUalue = n2 ? MinUalue(8,12) @ According to the function
End If 8 declarationMinValue()
lA _ expects two single-precision
End Fufiction ? MinUalue(0.001, -0.001) numbers as parameters.
-0.001 Anything else generates an error.
? MinUalue("ten", "twelue") [Tt
& Run-time errar '13"
Twpe mismatch

Help |

These five lines could be replaced with one line:
MinValue =iif(nl <= n2, n1, n2)

M Home | [4Previous | 150f16 | NextP |

12. An Introduction to Visual Basic Application to the assignment

12.5 Application to the assignment

You will need a MinValue() function later in the
assignment when you have to determine the quantity

to ship.
» Create a basuUtilities module in your assign-
ment database and implement a MinValue()
function.

A To ensure that no confusion arises between

your user-defined function and the built-in
SQL Min() function, do not call you function
Min() .

|ﬁHome | I4dPrevious | 160f16 | Nextp |

	12.1 Introduction: Learning the basics of programm...
	12.1.1 Interacting with the interpreter

	12.2 Learning objectives
	12.3 Tutorial exercises
	12.3.1 Invoking the interpreter
	12.3.2 Basic programming constructs
	12.3.3 Creating a module
	12.3.4 Creating subroutines with looping and branc...
	12.3.5 Using the debugger
	12.3.6 Passing parameters
	12.3.7 Creating the Min() function

	12.4 Discussion
	12.4.1 Interpreted and compiled languages

	12.5 Application to the assignment

