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Chapter 1: Signal and Linear System Analysis

Signals can be classified according to attributes.  A few such classifications are outlined

below.

1) A deterministic signal can be specified as a function of time by a mathematical formula.  At

any instant of time t, x(t) is a number.  For example, x(t) = Acosωt is a deterministic signal.

2. Random signals take on random values at any given time; at time t, random signal x(t) is a

random variable, not a simple number.  Random signals must be modeled probabilistically using

random process theory.

3. Periodic signals are deterministic signals for which

x(t) x(t T),  - <t<= + ∞ ∞ , (1-1)

where T is a constant.  The smallest such T is called the period of x.

4. Aperiodic signals are deterministic signals that are not periodic.  Usually, they are nonzero only

over a finite length of time.  The commonly-used single pulse is a simple example of an aperiodic

signal.

Dirac Delta Function

The Dirac Delta function is denoted as δ(t), and it is defined by the property

x(t) (t)dt x(0)
∞
−∞

=∫ δ , (1-2)
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Figure 1-1: a) Periodic signal with period T.  b) Aperiodic signal.



Class Notes EE426/506 10/04/07 John Stensby

Lattest Updates at http://www.ece.uah.edu/courses/ee426/ 1-2

where x(t) is any function that is continuous at the origin.  The delta function is only defined in

terms of what it does to integrals (it only appears under an integral sign).  In (1-2), a simple

change of variable produces

0 0x(t) (t t )dt x(t )
∞
−∞

− =∫ δ , (1-3)

where it is assumed that x(t) is continuous at t0.  Formula (1-3) is called the sifting property of the

delta function.  Other properties of the delta function are listed below.

1(at) (t)
a

=δ δ (1-4)

( t) (t)− =δ δ (1-5)

0 1 0 2t2
0t1

x(t ), t t t
x(t) (t t )dt

0, otherwise

< <⎧⎪− = ⎨
⎪⎩

∫ δ (1-6)

0 0 0x(t) (t t ) x(t ) (t t )− = −δ δ (1-7)

t (n) n (n)2
0 1 0 2t1

x(t) (t t )dt ( 1) x (0),   t t t− = − < <∫ δ (1-8)

In (1-8), the quantity x(n)(t) denotes the nth derivative of x; function x(t) and its first n derivatives

are assumed to be continuous at t = t0.  δ(n) is often called the nth generalized derivative of δ.

The delta function can be thought of as the limit of a suitably chosen “conventional”

function having unity area in an infinitesimally small width.  Figure 1-2 illustrates three commonly

used approximations.  The first is a rectangular pulse of width 2ε and height of 1/2ε.  It behaves

like a delta function because
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[ ]
0 0

limit (t)x(t) dt limit (2 ) /(2 ) x(0) x(0)
∞

ε−∞ε→ ε→
= ε ε =∫ δ (1-9)

-0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

x-Axis

0

10

20

30

40

50

δ ε(
x)

x1(x) exp2
⎡ ⎤
⎢ ⎥

ε⎢ ⎥⎣ ⎦
εδ ≡ −ε

ε = .01

ε = .02

c)

Figure 1-2: Three commonly-used approximations to the delta function.
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for any x(t) that is continuous at t = 0.  The approximation depicted by Figure 1-2b is given by

[ ]
2

21 1(t) sin( t / ) Sa( t / )
tε

⎡ ⎤= ε π ε = π ε⎢ ⎥π ε⎣ ⎦
δ , (1-10)

where Sa(x) = {sin(x)}/x.  As ε → 0, function (1-10) becomes a delta function.  Finally, Figure 1-

2c depicts the approximation

t1(t) exp
2ε

⎡ ⎤
δ = −⎢ ⎥ε ε⎣ ⎦

. (1-11)

All three approximations are of unit area, independent of ε > 0.

Unit Step Function

The unit step function is denoted as U(t), and it is defined as

0, t 0
U(t)

1 t 0

<⎧⎪= ⎨
⎪ >⎩

. (1-12)

The unit step is related to the delta function by the relationship

t
U(t) (x)dx

−∞
= ∫ δ (1-13)

dU(t)(t)
dt

=δ . (1-14)

The unit step has many uses.  For example, it can be used to construct complicated

functions from simple pieces.  Figure 1-3 illustrates a function that can be constructed from

delayed ramps.  Unit step functions can be used to describe this function as
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U(t) tU(t) (t 1)U(t 1) (t 2)U(t 2) (t 3)U(t 3)= − − − − − − + − − . (1-15)

Energy and Power Signals

The total energy on a per-ohm basis in the complex-valued signal x(t) is defined as

T 2
TT

E limit x(t) dt
−→∞

= ∫ . (1-16)

The total power on a per-ohm basis in the complex-valued signal x(t) is defined as

T 2
TT

1P limit x(t) dt
2T −→∞

= ∫ . (1-17)

x(t) is said to be an energy signal if 0 < E < ∞ (P = 0 for an energy signal).  And, x(t) is said to be

a power signal if 0 < P < ∞ (E = ∞ for a power signal).

Example 1-1: Consider x(t) = Ae-αt U(t), α > 0, where A and α are constants.

2
2 2 2 t

0 0
AE x (t)dt A e dt
2

∞ ∞ − α= = =
α∫ ∫ (1-18)

x(t) is an energy signal.

Example 1-2: Consider s(t) = Acos(ωt + θ), where A, ω, and θ are constants.  Compute

1

1 2 3 time

x(t)

Figure 1-3:  Simple signal that can be synthesized
using ramps.
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2T 2 2
TT

1 AP limit A cos ( t ) dt
2T 2−→∞

= ω + θ =∫ . (1-19)

x(t) is a power signal since 0 < P < ∞.

Generalized Fourier Series

Vector space concepts can be applied to signals.  Recall the n-dimensional vector space

Rn.  A vector x ∈ Rn can be represented as

n
k k

k 1
x

=
= ξ φ∑ , (1-20)

where vectors φk, 1 ≤ k ≤ n, represent a basis for the space, and the ξk are constants.  This basic

idea extends to time-varying signals defined on an interval [0, T].

One can show that a vector space, called L2[0, T] here, can be defined which consists of

all complex-valued signals x(t), 0 ≤ t ≤ T, that satisfy

T 2
0

x(t) dt < ∞∫ . (1-21)

We use as scalars the field of complex numbers.

Let φk(t), 1 ≤ k ≤ n, be a set of elements of space L2[0, T].  Furthermore, require that they

be orthogonal, which means

T
k j k0

(t) (t)dt c , k j

0 k j

∗φ φ = =

= ≠

∫ , (1-22)

where the ck are real (nonzero) numbers.  The orthogonal φk(t), 1 ≤ k ≤ n, are said to orthonormal

if ck = 1, 1 ≤ k ≤ n.  Let x(t) be an arbitrary signal (i.e., vector) in L2[0, T].  Approximate x by the
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sum

n
a k k

k 1
x (t) (t)

=
= ξ φ∑ , (1-23)

where ξk are scalars (complex numbers).  Pick the ξk to minimize the integral square error (ISE)

2nT T2
n a k k0 0

k 1

n nT T T2 2
k k k k k k0 0 0

k 1 k 1

e x (t) x(t) dt (t) x(t) dt

x(t) dt x(t) (t)dt x (t) (t)dt c

=

∗ ∗ ∗

= =

≡ − = ξ φ −

⎡ ⎤= − ξ φ + ξ φ + ξ⎢ ⎥⎣ ⎦

∑∫ ∫

∑ ∑∫ ∫ ∫

. (1-24)

The orthonormality of the φk ,and the ability to interchange integration and summation, have been

used to produce (1-24).  Now, by adding and subtracting a term, write (1-24) as

T 2
n 0

2n n nT T T2
k k k k k k k0 0 0kk 1 k 1 k 1

2n T
k0kk 1

e x(t) dt

1x(t) (t)dt x (t) (t)dt c x(t) (t)dt
c

1 x(t) (t)dt
c

∗ ∗ ∗ ∗

= = =

∗

=

=

⎡ ⎤− ξ φ + ξ φ + ξ + φ⎢ ⎥⎣ ⎦

− φ

∫

∑ ∑ ∑∫ ∫ ∫

∑ ∫

, (1-25)

which can be organized as (regroup the second line of (1-25))

2 2n nT T T2
n k k k k0 0 0k kk 1 k 1

1 1e x(t) dt c x(t) (t)dt x(t) (t)dt
c c

∗ ∗

= =
= + ξ − φ − φ∑ ∑∫ ∫ ∫ . (1-26)
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Now, select the ξk to minimize the ISE en.  Note that ξk only appears in the second term on the

right hand side of (1-26).  Also, this second term is always nonnegative (since the ck > 0).  Hence,

to minimize ISE en, we should chose the ξk to “zero out” the second term.  That is, take as the ξk

the values

T
k k0k

1 x(t) (t)dt
c

∗ξ = φ∫ , (1-27)

1 ≤ k ≤ n.  When these ξk are used, the minimum integral square error is

2n nT T T2 2 2
n k k k0 0 0kk 1 k 1

1min[e ] x(t) dt x(t) (t)dt x(t) dt c
c

∗

= =
= − φ = − ξ∑ ∑∫ ∫ ∫ . (1-28)

There are infinite sets of basis functions for which the ISE is zero for all x ∈ L2[0, T].

That is, there are infinite-dimensional sets of functions φk , 1 ≤ k < ∞, for which

n
n
limit  min[e ] 0

→∞
= (1-29)

and the generalized Fourier series

k k
k 1

x(t) (t)
∞

=
= ξ φ∑ (1-30)

holds for all x ∈ L2[0, T].  The ξk, defined by (1-27), are called generalized Fourier coefficients.

Sets φk, 1 ≤ k < ∞, of basis functions for which (1-29) holds for all x ∈ L2[0, T] are said to be

complete.

It is very important to remember that the equality sign in (1-30) means equality in the

integral square error sense.  This is not the same as pointwise equality.  As will be seen in the
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examples which follow, there can be values of t for which x(t) differs from the series expansion.

Suppose that an infinite-dimensional complete orthogonal sequence is used so that the ISE

approaches zero as n approaches infinity.  As a result, from (1-28) we get

T 2 2
k k0

k 1
x(t) dt c

∞

=
= ξ∑∫ , (1-31)

a result known as Parseval’s theorem.

Example 1-3:  Consider the set of two orthonormal functions illustrated by Figure 1-4. Use these

functions to compute a best integral-square-error approximation to the signal

sin( t), 0 t 2
x(t)

0, otherwise

π ≤ ≤⎧⎪= ⎨
⎪⎩

. (1-32)

Using (1-27), the coefficients are computed as

2 1
1 10 0

2 2
2 20 1

2(t)sin( t)dt sin( t)dt

2(t)sin( t)dt sin( t)dt .

ξ = φ π = π =
π

ξ = φ π = π = −
π

∫ ∫

∫ ∫
(1-33)

Thus, the two-term approximation of x(t) is

t1

1

φ1(t)

1

1

φ2(t)

t2

Figure 1-4: Two orthonormal functions.
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a 1 2
2x (t) [ (t) (t)]= φ − φ
π

, (1-34)

a result that is depicted by Figure 1-5.  Finally, the ISE that results from the approximation is

22 2
20

2 8ISE sin ( t)dt 2 1 .189⎛ ⎞= π − = − ≈⎜ ⎟π⎝ ⎠ π∫ (1-35)

Example 1-4: Nyquist Low-Pass Sampling Theorem

The Nyquist low-pass sampling theorem is an application of generalized Fourier Series.

Here, we do not use space L2 described above; instead, we use the signal space V of all signals

x(t), -∞ < t < ∞, that are band-limited to W radians/sec.  That is, space V consists of all signals

x(t), -∞ < t < ∞, for which ⎮F [x(t)]⎮ = 0 for ⎮ω⎮ ≥ W (verify that this is a valid vector space).

We use basis functions of type {sin(x)}/x, and the Fourier coefficients are simply the signal

samples x(nπ/W), -∞ < n < ∞.

2/π

-2/π

x(t)

xa(t)

1 2
time

Figure 1-5: Sine wave and its two term
approximation.
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Define

n (t) Sa( t n ),  - <n< ,φ ≡ − π ∞ ∞W (1-36)

where Sa(x) = {sin(x)}/x.  The Fourier transform of φn is

2
n[Sa( t n )] exp{ j } Rect ( )π π⎛ ⎞− π = − ω ω⎜ ⎟

⎝ ⎠ WW
W W

F , (1-37)

where Fig. 1-6 defines Π.  Note that φn ∈ V for all n.  Without proof, we claim that the set of φn, -

∞ < n < ∞, is complete in V;  any signal in V can be expanded in a Fourier series that represents

the signal as a linear combination of the φn.

We show that the φn are orthogonal.  By applying Parseval’s theorem we can write

n m n m
1(t) (t)dt [ (t)] [ (t)] d

2
∞ ∞ ∗
−∞ −∞

φ φ = φ φ ω
π∫ ∫ F F . (1-38)

Now, use (1-37) to obtain

21Sa( t n )Sa( t m ) dt exp j(n m) d
2

∞ ∗
−∞ −

π π⎡ ⎤ ⎛ ⎞− π − π = − − ω ω⎜ ⎟⎢ ⎥π ⎣ ⎦ ⎝ ⎠∫ ∫
W
W

W W
W W

, (1-39)

or

1

1/2 ω

Π(ω)

-1/2

Figure 1-6:  Graph of Π(ω).
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Sa( t n )Sa( t m ) dt , n m

0, n m

∞ ∗
−∞

π− π − π = =

= ≠

∫ W W
W , (1-40)

and the φn are orthogonal as claimed.

Now, use the φn as a set of basis functions.  Let x(t) be a bandlimited signal; that is,

assume that X(ω) = F [ x(t)] = 0 for ⎮ω⎮ ≥ W.  Expand x(t) in a Generalized Fourier Series using

φn = Sa(Wt - nπ) as the basis functions.  The generalized Fourier coefficients are

n
1 (t)Sa( t n ) dt

( / )
∞ ∗
−∞

ξ = − π
π ∫ x W

W
(1-41)

Now, let X(ω) = F [x(t)], and use Parseval’s theorem to write

n

2

1 (t)Sa( t n ) dt
( / )

1 1 n( ) exp j Rect ( ) d
( / ) 2

1 n( )exp j d   (since ( ) 0 for )
2

n= 

∞ ∗
−∞

∞
−∞

∞
−∞

ξ = − π
π

⎡ ⎤π π⎛ ⎞ ⎛ ⎞= ω ω ω ω⎜ ⎟ ⎜ ⎟⎢ ⎥π π ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤π⎛ ⎞= ω ω ω ω = ω ≥⎜ ⎟⎢ ⎥π ⎝ ⎠⎣ ⎦

π⎛ ⎞
⎜ ⎟
⎝ ⎠

∫

∫

∫

W

W
W

X
W W W

X X W
W

W

x

x

(1-42)

Hence, bandlimited x(t) can be reconstructed from its samples by the generalized Fourier series

n

n(t) Sa( t n )
∞

=−∞

π⎛ ⎞= − π⎜ ⎟
⎝ ⎠∑x x W

W
. (1-43)

This result is the well-known Nyquist low-pass sampling theorem, and it is simply an application
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of the theory of generalized Fourier series.

Exponential Fourier Series

Let x(t) be defined on the interval [0, T].  For the exponential Fourier Series, we use the

complete orthogonal set φk = exp[jkω0t], where ω0 = 2π/T.  For these basis functions, we have

0T jk t
k 0

c e dt Tω 2= ⎮ ⎮ =∫ , (1-44)

so that

0jk t
k

k
x(t) e

∞
ω

=−∞
= ζ∑ , (1-45)

where

0T jk t
k 0

1 x(t)e dt
T

− ωζ = ∫ , (1-46)

and ω0 = 2π/T.  Series (1-45) represents x(t) on the interval [0, T]; if x(t) is T-periodic, the series

represents x(t) on -∞ < t < ∞.

If x(t) is continuous at t0 ∈ [0, T], the series (1-45) converges to the value x(t0).  If x(t)

has a jump discontinuity at t0 ∈ [0, T], then series (1-45) converges to the midpoint

0 0x(t ) x(t )
2

+ −+ . (1-47)

In general, the series (1-45) will not represent x(t) outside of the interval  [0, T].  For the special

case where x(t) is T-periodic, the series represents x(t) for all t.

The double-sided amplitude spectrum of T-periodic x(t) is a plot of ⎮ζk⎮ versus k. The
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double-sided phase spectrum of T-periodic x(t) is a plot of (ζk versus k.  Usually, phase is

defined and plotted in a modulo-2π manner.  That is, phase (ζk is defined so that

k

k

  , k 0

  , k 0

−π < ζ ≤ π >

−π ≤ ζ < π <

(

(
. (1-48)

There exists commonly-used terminology for the T-periodic case.  ζ0 is the DC

component.  Frequency ω0 is the fundamental frequency.  For k ≥2, kω0 is the frequency of the kth

harmonic.

Example 1-5:  Half-Wave Rectified Sine Wave

Consider the signal

0x(t) Asin( t), 0 t T / 2

0, T / 2 t T

= ω ≤ ≤

= ≤ ≤
, (1-49)

where ω0 = 2π/T, and x(t) = x(t + T).  The Fourier series coefficients are

0T / 2 jk t
k 00

1 Asin( t)e dt
T

− ωζ = ω∫ (1-50)

For k = 1, this can be computed as

0
0

t T / 2j2 tT / 2 j2 t
1 0 0 t 0

1 A A e Ae 1 dt t j
T 2j 2jT j2 4

=− ω
− ω

=

⎡ ⎤ ⎛ ⎞⎡ ⎤ζ = − + = + = −⎢ ⎥ ⎜ ⎟⎣ ⎦ ω ⎝ ⎠⎢ ⎥⎣ ⎦
∫ (1-51)

For k ≥ 0, k ≠ 1, we can integrate by parts, or use an integral table, to obtain
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[ ]

[ ] [ ]

0
0

0

jk tT / 2 t T / 2jk t
k 0 0 0 0 0 t 02 20

0 0

jk T / 2
0 02 2

0 0 0 0

1 A eA sin( t)e dt jk sin( t) cos( t)
T T ( jk )

A e A 1jk sin( T / 2) cos( T / 2) 0 1
T T(jk) ( jk)

− ω
=− ω
=

− ω

ζ = ω = − ω ω − ω ω
ω + ω

= − ω − ω − −
ω + ω ω + ω

∫
. (1-52)

But, ω0T = 2π, so that (1-52) becomes

[ ]
jk k

k 2 2 2

2

e A ( 1) 1A jk sin( ) cos( ) A
2 (1 k ) 2 (1 k ) 2 (1 k )

A , k even
(1 k )

0, k odd, k 1

− π − +ζ = − π − π + =
π − π − π −

⎧
⎪⎪π −= ⎨
⎪

≠⎪⎩

,

for k ≥ 0, k ≠ 1.  Plots of the double-sided amplitude and phase spectrum are depicted by Figure

1-7.

Symmetry Properties of Exponential Fourier Series Coefficients

Indexed on integer k, let ζk denote the exponential Fourier series coefficients.  If the

original function x(t) is real-valued, then it is easy to see that

k k
∗
−ζ = ζ (1-53)

for all k.  Hence, this fact implies the symmetry properties

k k

k k

−

−

ζ = ζ

ζ = − ζ( (
. (1-54)

That is, the magnitude is an even function of index k while the phase is an odd function.  Also, it
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is easily shown that Re[ζk] is an even function of k, and Im[ζk] is an odd function.

Parseval’s Theorem for Exponential Fourier Series

For the exponential Fourier series, Parseval’s theorem says that average power P can be

expressed as

T 2 2
k0

k

1 x(t) dt
T

∞

=−∞
= = ζ∑∫P (1-55)

Think of Parseval’s theorem as giving two ways (using time and frequency domain principles) to

compute the per-ohm average power of a periodic signal.

Single-Sided Amplitude and Phase Spectra for Real-Valued, Periodic Signals

Suppose x(t) is a real-valued, T-periodic signal.  The exponential Fourier series can be

written as

ωo 2ωo 3ωo 4ωo−ωo−2ωo−3ωo

Amplitude Spectrum ⎮ζk⎮ A/π
A/4

A/3π
A/15π

nωo

A/4

A/3π
A/15π

−4ωo

ωo

2ωo

3ωo

4ωo−ωo

−2ωo

−3ωo

Mod-2π Phase Spectrum (ζk

−π/2

nωo

−π

−4ωo

π π

π/2

−π

0

0

Figure 1-7:  Double-sided amplitude and mod-2π phase spectrum of
a half-wave rectified sinusoid.
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0 0

0 0 kk

jk t jk t
k 0 k

k k 1

(jk t k t )jj
0 k 0 k

k 1 k 1

0 k 0 k
k 1

x(t) e 2Re e

2Re e e 2 Re e

2 cos(k t )

∞ ∞
ω ω

=−∞ =

∞ ∞ +ω ω ζζ

= =

∞

=

⎡ ⎤= ζ = ζ + ζ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ζ + ζ = ζ + ζ⎣ ⎦ ⎣ ⎦

= ζ + ζ +ω ζ

∑ ∑

∑ ∑

∑

((

(

(1-56)

A plot of ζ0 at the origin and 2⎮ζk⎮ versus kω0, k > 0, is known as the single-sided amplitude

spectrum.  A plot of (ζk versus kω0, k > 0, is known as the single-sided phase spectrum.

The Fourier Transform

The Fourier series cannot represent an aperiodic function x(t) on the entire time line - ∞ <

t < ∞.  In what follows, we seek a frequency domain representation for aperiodic signals.  This

will lead to the Fourier transform of x(t) which we derive as the formal limit of a Fourier series.

Let x(t) be defined on the entire time line - ∞ < t < ∞.  Use an exponential Fourier series

to expand x(t) on the finite interval [-T/2, T/2]; this results in

0

0

jk t
k

k

T / 2 jk t
k T / 2

x(t) e , T / 2 t T / 2

1 x(t)e dt
T

∞
ω

=−∞

− ω
−

= ζ − ≤ ≤

ζ =

∑

∫

, (1-57)

where ω0 = 2π/T.  Define

0T / 2 jk t
0 k T / 2

X(k ) T x(t)e dt− ω
−

ω ≡ ζ = ∫ (1-58)

so that x(t), -T/2 ≤ t ≤ T/2, can be represented as
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0jk t
0

k

1 2x(t) X(k )e , T / 2 t T / 2
2 T

∞
ω

=−∞

π= ω − ≤ ≤
π ∑ . (1-59)

Now, consider the formal limit of (1-59) as T → ∞, kω0 → ω (a new frequency variable), and

(2π/T) → dω.  In the limit (1-59) and (1-58) become

j t1x(t) X( )e d
2

∞ ω
−∞

= ω ω
π ∫ (1-60)

and

j tX( ) x(t)e dt
∞ − ω
−∞

ω = ∫ , (1-61)

respectively.  Transform (1-61) is the Fourier transform, and (1-60) is the inverse Fourier

transform.

Double-Sided Amplitude and Phase Spectra of Fourier Transforms

Often, plots are used to depict a Fourier transform.  First, we write the transform in terms

of its magnitude and phase as

X( ) M( )exp[ j ]ω = ω θ , (1-62)

where M(ω) = ⎮X(ω)⎮ = 2πAdcδ(ω) + Mac(ω), and θ(ω) = (X(ω).  Here, we use Adc to denote

the amplitude of a possible discrete DC component in the wave form, and Mac denotes the AC

spectra (i.e., Mac contains no impulse at ω = 0).  A plot of M(ω), - ∞ < ω < ∞, is known as a

double-sided amplitude spectrum, while a plot of θ(ω), - ∞ < ω < ∞, is known as a double-sided

phase spectrum.  Usually, we plot phase in a modulo-2π manner; for ω < 0, define phase so that -

π ≤ θ < π, and for ω > 0, define phase so that -π < θ ≤ π.
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Example 1-6:  Double-Sided Spectra of a Pulse

Consider the rectangular pulse depicted by Figure 1-8.  First, assume that t0 = 0 so that the

pulse is symmetrical with respect to the origin.  For the case t0 = 0, we can compute

( )

/ 2j t
0

2A sin( / 2)X( ) x(t)e dt 2A cos( t)dt sin( / 2) A
/ 2

A Sa / 2

∞ τ− ω
−∞

ωτω = = ω = ωτ = τ
ω ωτ

= τ ωτ

∫ ∫
, (1-63)

where Sa(x) ≡ sin(x)/x, a standard function in signal processing and communication systems.

Now, use the time-shifting theorem to compute the Fourier transform of AΠ[(t-t0)/τ] as

( )0j tX( ) A e Sa / 2− ωω = τ ωτ . (1-64)

For the case t0 = τ/2, the double-sided amplitude and phase spectra is depicted by Figure

1-9 (phase is plotted in a modulo-2π manner).  For t0 = τ/6, Figure 1-10 depicts the spectra.  Note

that the delay value t0 has a significant effect on the phase function θ(ω) (what would the phase

plot look like for t0 = τ/4?  For t0 = τ/8?).

Single-Sided Amplitude and Phase Spectra of the Fourier Transform

If x(t) is real-valued, it is easy to show that M(ω) = ⎮X(ω)⎮ and R(ω) = Re[X(ω)] (the

real part) are even functions of ω.  Likewise, θ(ω) = (X(ω) and I(ω) = Im[X(ω)] (the imaginary

part) are odd functions.  Write X(ω) = M(ω)exp[jθ(ω)] = 2πAdcδ(ω) + Mac(ω)exp[jθ(ω)].  The

t

A

t0

τ

AΠ[(t-t0)/τ]

Figure 1-8: AΠ[(t-t0)/τ], a rectangular pulse of
width τ which is centered at t0.
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quantity Adc is the DC component (which may be zero) in x(t), and Mac(ω) contains no impulse at

ω = 0.  If x(t) is real-valued, we can write

j t j ( ) j t
dc ac

dc ac0

1 1x(t) X( ) e d [2 A ( ) M ( )e ]e d
2 2

1A 2M ( ) cos{ t ( )}d
2

∞ ∞ω θ ω ω
−∞ −∞

∞

= ω ω = π δ ω + ω ω
π π

= + ω ω + θ ω ω
π

∫ ∫

∫
. (1-65)

For ω ≥ 0, a plot of 2πAdcδ(ω) + 2Mac(ω) is known as the single-sided amplitude spectrum of the

real-valued signal x(t).  Likewise, for ω ≥ 0, a plot of θ(ω) is known as the single-sided phase

spectrum.  No negative frequencies are displayed on the plots.  For ω > 0, note the factor of two

difference between the single- and double-sided amplitude spectra (both amplitude plots display

the same discrete DC component).

ω (radians/second)

A
bs

ol
ut

e 
M

ag
ni

tu
de

2π/τ 4π/τ 6π/τ 8π/τ−2π/τ−4π/τ−6π/τ−8π/τ 0
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⎮X(ω)⎮ t0 = τ/2
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∠X(ω) t0 = τ/2

Figure 1-9: Double-sided magnitude and phase
spectra for the case t0 = τ/2.

Figure 1-10: Double-sided magnitude and
mod-2π phase spectra for the case t0 = τ/6.
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Parseval’s Theorem for Fourier Transforms of Energy Signals

The energy in an energy signal can be expressed as

2 j t j t1 1E x(t) dt x (t) X( )e d dt X( ) x (t)e d dt
2 2

1 X( )X ( )d
2

∞ ∞ ∞ ∞ ∞∗ ω ∗ ω
−∞ −∞ −∞ −∞ −∞

∞ ∗
−∞

⎡ ⎤ ⎡ ⎤= = ω ω = ω ω⎢ ⎥ ⎢ ⎥π π⎣ ⎦ ⎣ ⎦

= ω ω ω
π

∫ ∫ ∫ ∫ ∫

∫

, (1-66)

which is the same as

2 21E x(t) dt X( ) d
2

∞ ∞
−∞ −∞

= = ω ω
π∫ ∫ (1-67)

Equation (1-67) is Parseval’s Theorem for Fourier transforms.  Think of this result as providing

two methods for calculating the energy in an energy signal.  The quantity

2G( ) X( )ω = ω (1-68)

is called the energy density spectrum of energy signal x(t); it has units of Joules/Hz.

Convolution

The convolution of signals f(t) and g(t) is a new function of time.  It is defined by

f (t) g(t) f ( )g(t )d
∞
−∞

∗ ≡ τ − τ τ∫ . (1-69)

A simple change of variable produces

f (t) g(t) f ( )g(t )d f (t )g( )d
∞ ∞
−∞ −∞

∗ ≡ τ − τ τ = − τ τ τ∫ ∫ . (1-70)
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Hence, you can “fold and shift” f or g in the convolution integral.  A close inspection of (1-69)

reveals that convolution involves the operations

1) fold g(τ) to produce g(-τ),

2) shift g(-τ) to form g(t-τ), and

3) integrate the product f(τ)g(t-τ) over the range -∞ < τ < ∞.

Example 1-7:  Use formula (1-69) to convolve the functions

CASE 1: t < 0

No overlap ⇒ f∗g = 0 for t < 0

CASE 2: 0 < t < 1

t t
0 0

2

1 (1 [t ])d (1 t )d

t t / 2, 0 < t < 1

⋅ − − τ τ = − + τ τ

= −

∫ ∫

τ

1
f(τ)

τ

1
g(τ)

11

τ-axis

1

1tt-1

τ-axis

1

1
t

Overlap region from 0 to t
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CASE 3: 1 < t < 2

1 2
t 1

1 (1 [t ])d 2 2t t / 2, 1 < t < 2
−

⋅ − − τ τ = − +∫

CASE 4:  t > 2

No overlap ⇒ f∗g = 0, t > 2

The convolution of f and g is

2

2

f g 0, t 0

t t / 2, 0 t 1

2 2t t / 2, 1 t 2

0 t 2

∗ = <

= − < <

= − + < <

= >

The result of the convolution is

depicted by Figure 1-11.

τ-axis

1

1

t-1
Overlap region from t-1 to 1

τ-axis

1

1 tt-1

No Overlap

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.1

0.2

0.3

0.4

0.5

f∗
g

t

t -
 t

2 /2

2 - 2t + t 2/2

Figure 1-11:  Result of the convolution of f and g.
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Superposition Theorem

If x1(t) ↔ X1(ω) and x2(t) ↔ X2(ω) then, for any constants α and β, we have

1 2 1 2x (t) x (t) X ( ) X ( )α + β ↔ α ω + β ω , (1-71)

a result that follows from the fact that integration is a linear operation.

Time Shifting Theorem

If x(t) ↔ X(ω), then for any shift t0, we have

( ) 0j t
0x t t e X( )− ω− ↔ ω . (1-72)

Proof:

[ ] 0 0

0

j ( t ) j tj t j
0 0

j t

x(t t ) x(t t ) e dt x( ) e d e x( ) e d

e X( )

∞ ∞ ∞− ω λ+ − ω− ω − ωλ
−∞ −∞ −∞

− ω

− = − = λ λ = λ λ

= ω

∫ ∫ ∫F
. (1-73)

Time Scaling Theorem

If x(t) ↔ X(ω), then for any non-zero, real-valued constant α, we have

( ) 1x t X( / )α ↔ ω α
α

. (1-74)

Proof:  First assume that α > 0 and write

[ ] j t j( / )1 1x( t) x( t) e dt x( ) e d X( / )
∞ ∞− ω − ω α λ
−∞ −∞

α = α = λ λ = ω α
α α∫ ∫F . (1-75)
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Next, consider the case α < 0 and write

[ ] j t j( / ) j( / )1 1x( t) x( t) e dt x( ) e d x( ) e d

1 X( / )

∞ −∞ ∞− ω − ω α λ − ω α λ
−∞ ∞ −∞

α = α = λ λ = − λ λ
α α

= − ω α
α

∫ ∫ ∫F

. (1-76)

Now, recall the definition

, 0

, 0

α = α α >

= −α α <
. (1-77)

Combine the last three equations to obtain (1-74).

Symmetry Theorem

The Fourier transform is symmetrical.  That is, x(t) and X(ω) are transform pairs, then we

have the two pairs

x(t) X( )

X(t) 2 x( )

↔ ω

↔ π −ω
(1-78)

Proof:  Simply interchange t and ω (after all, they are just algebraic variables) in

j t1x(t) X( ) e d
2

∞ ω
−∞

= ω ω
π ∫

to obtain (after multiplication by 2π)

j t2 x( ) X(t) e dt
∞ ω
−∞

π ω = ∫ .
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Now, in this last equation, replace ω by -ω to obtain

j t2 x( ) X(t) e dt
∞ − ω
−∞

π −ω = ∫ .

This last equation is the desired result X(t) ↔ 2πx(-ω), and this establishes (1-78).

Example 1-8:  Suppose we need the Fourier transform of f(t) = 2τ0Sa(τ0t), where Sa(t) = sin(t)/t.

We cannot apply the definition directly; the integral is “too hard” to integrate.  We cannot find the

time-domain function f(t) = 2τ0Sa(τ0t) in our table of Fourier transforms.  However, in our table,

we do see the transform pair F[rect(t/2τ0)] = 2τ0Sa(ωτ0), as depicted by Figure 1-12.

Application of the Symmetry Theorem allows us to “flip” this pair and obtain the desired

results.  So, we conclude that the desired transform is F[2τ0Sa(τ0t)] = 2πrect(ω/2τ0), as shown by

Figure 1-13.

Frequency Shifting Theorem

If x(t) ↔ X(ω) then for any frequency shift ω0 we have

0j t
0x(t)e X( )− ω ↔ ω+ ω (1-79)

Proof: Observe that

τ0−τ0

1

f(t) = rect(t/2τ0)

Time Domain

ω (Rad/Sec)

F(ω) = 2τ0Sa(ωτ0)

0

2τ0

π/τ0−π/τ0

Frequency Domain

t

Figure 1-12: Fourier transform found in almost all transform tables.
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0 0 0j t j t j( )tj tx(t)e {x(t)e } e dt x(t)e dt
∞ ∞− ω − ω − ω +ω− ω
−∞ −∞

⎡ ⎤ = =
⎣ ⎦ ∫ ∫F . (1-80)

This equation implies

0j t
0x(t)e X( )− ω ↔ ω+ ω , (1-81)

the desired result.

Differentiation Theorem

If x(t) ↔ X(ω) then

n
n

n
d x ( j ) X( )
dt

↔ ω ω (1-82)

Proof

n n n
j t j t n j t

n n n

-1 n

d x d 1 1 d 1X( )e d X( ) e d {( j ) X( )}e d
2 2 2dt dt dt

( j ) X( )

∞ ∞ ∞ω ω ω
−∞ −∞ −∞

⎛ ⎞= ω ω = ω ω = ω ω ω⎜ ⎟π π π⎝ ⎠

⎡ ⎤= ω ω⎣ ⎦

∫ ∫ ∫

F

Figure 1-13:  Transform pair obtained by applying the symmetry theorem to the pair depicted
by Figure 1-12.

τ0−τ0

2π

t (Sec)

F(t) = 2τ0Sa(tτ0)

0

2τ0

π/τ0-π/τ0

Time Domain Frequency Domain

f(ω) = 2πrect (ω/2τ0)

ω (Rad/Sec)
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This last result establishes the desired results

n
n

n
d x ( j ) X( )
dt

↔ ω ω .

Convolution Theorem

Convolution in the time domain gives rise to multiplication in the frequency domain.  That

is,

1 2 1 2 1 2 1 2x x x ( )x (t )d x (t )x ( )d X ( )X ( )
∞ ∞
−∞ −∞

∗ = λ − λ λ = − λ λ λ ↔ ω ω∫ ∫ .

Proof

{ } { }j t j t
1 2 1 2 1 2

j
1 2

1 2

[x x ] e x ( )x (t )d dt x ( ) e x (t )dt d

x ( )X ( )e d

X ( )X ( )

∞ ∞ ∞ ∞− ω − ω
−∞ −∞ −∞ −∞

∞ − ωτ
−∞

∗ = τ − τ τ = τ − τ τ

= τ ω τ

= ω ω

∫ ∫ ∫ ∫

∫

F

Integration Theorem

If x(t) ↔ X(ω), then

t X( )x( )d X(0) ( )
j−∞
ωλ λ ↔ + π δ ω
ω∫

Proof:  Note that the left-hand side of the previous equation can be expressed as

t
x( )d U(t) x(t)

−∞
λ λ = ∗∫ ,
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where U(t) is the unit step function.  Use the Convolution Theorem, and take the Fourier

transform of this last equation to obtain

[ ] [ ] [ ]t 1x( )d U(t) x(t) U(t) x(t) ( ) X( )
j

X( ) ( )X(0)
j

−∞
⎡ ⎤⎡ ⎤λ λ = ∗ = = πδ ω + ω⎢ ⎥⎢ ⎥ ω⎣ ⎦ ⎣ ⎦

ω= + πδ ω
ω

∫F F F F

(1-83)

Multiplication Theorem

Multiplication in the time domain corresponds to convolution in the frequency domain.

That is,

1 2 1 2
1x (t)x (t) X ( ) X ( )

2
↔ ω ∗ ω

π
(1-84)

Proof:  Similar to the Convolution Theorem given above.

Fourier Transform of Periodic Signals

Let x(t) be T-periodic with exponential Fourier series expansion

0jn t
n

n
x(t) e

∞
ω

=−∞
= ζ∑ ,

where ω0 = 2π/T.  On a term-by-term basis, take the Fourier transform of the series to obtain

n 0
n

[x(t)] 2 ( n )
∞

=−∞
= πζ δ ω− ω∑F , (1-85)

a result depicted by Fig 1-14.
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Cross Correlation and Autocorrelation of Energy Signals

Let x(t) and y(t) be complex-valued energy signals.  Their cross correlation is defined as

xyR ( ) x (t)y(t )dt
∞ ∗
−∞

τ = + τ∫ . (1-86)

Crosscorrelation is non-comutative; that is, Rxy(τ) ≠ Ryx(τ).  However, xy yxR ( ) R ( )∗τ = −τ  (can

you show this result?).

The autocorrelation of complex-valued signal x(t) is defined as

xR ( ) x (t)x(t )dt
∞ ∗
−∞

τ = + τ∫ (1-87)

Note that xxR ( ) R ( )∗τ = −τ  and that

2
xR (0) x (t)x(t)dt x(t) dt Signal Energy

∞ ∞∗
−∞ −∞

= = =∫ ∫ . (1-88)

An upper bound on ⎮Rxy(τ)⎮ is given by

xy x y2 R ( ) R (0) R (0)τ ≤ + . (1-89)

We prove this for the case of real-valued signals x and y (the case where x and y are complex-

valued is slightly more complicated).

⎮F [x]⎮

ωω0−ω0 3ω0−3ω0 2ω0−2ω0

2πζ0
2π⎮ζ1⎮ 2π⎮ζ2⎮

2π⎮ζ3⎮

Figure 1-14:  Fourier Transform of Periodic Signal



Class Notes EE426/506 10/04/07 John Stensby

Lattest Updates at http://www.ece.uah.edu/courses/ee426/ 1-31

2 2 2

x y xy

[x(u) y(u )] du x(u) du y(u ) du 2 x(u)y(u )du

R (0) R (0) 2R ( ) 0

∞ ∞ ∞ ∞
−∞ −∞ −∞ −∞

± + τ = + + τ ± + τ

= + ± τ ≥

∫ ∫ ∫ ∫
(1-90)

Hence (1-89) follows as claimed.

If in this last result we use x = y then we have Rx(0) ≥ Rx(τ) for all τ; that is, the maximum

autocorrelation occurs at the origin.

Example 1-9:

Calculate the cross correlation xyR ( ) x (t)y(t )dt
∞ ∗
−∞

τ = + τ∫  for the two real-valued signals

Case 1: τ > 1, no overlap

xyR ( ) 0,  > 1τ = τ

Case 2: 0 < τ < 1
1 21

xy 20
R ( ) ( t) dt [ 1], 0 <  < 1

−τ+
τ = τ + = − τ − τ∫

Case 3: -1 < τ < 0

1 21
xy 2R ( ) ( t) dt [ 1] , 1 <  < 0

−τ
τ = τ + = τ + − τ∫

t

1
x(t)

t

1
y(t)

11

t

1
x(t)

1
-τ+1

-τ
y(t+

τ)

overlap from 0 to -τ+1

t

1 x(t)

1
-τ

y(t+τ)

overlap from -τ to 1

t

1
x(t)

1-τ+1-τ

y(t+
τ)
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Case 4:  τ < -1

xyR ( ) 0,  < -1τ = τ

Summary:

xy

21
2

21
2

R ( ) 0, , > 1

[ 1] ,0 <  < 1

[ 1] , 1 <  < 0

0 , 1

τ = τ

= − τ − τ

= τ + − τ

= τ < −

Relationship between Crosscorrelation and Convolution

Find the relationship between

xyR ( ) x (t)y(t )dt
∞ ∗
−∞

τ = + τ∫   and  x y x(t)y( t)dt
∞
−∞

∗ = τ −∫ , (1-91)

crosscorrelation and convolution, respectively.  Use the change of variable v = t + τ in Rxy to

obtain

xyR ( ) x (v )y(v)dv x ( [ v])y(v)dv
∞ ∞∗ ∗
−∞ −∞

τ = − τ = − τ −∫ ∫ , (1-92)

which is just the convolution of x*(-t) and y(t).  Hence, Rxy(τ) can be computed by convolving

x*(-t) and y(t);  that is,

t

1 x(t)

1
-τ

y(t
+τ)
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xyR ( ) x*(-t) y(t)τ = ∗ . (1-93)

Fourier Transform of Crosscorrelation - Energy Density Spectrum

Let x(t) ↔ X(ω) and y(t) ↔ Y(ω) be Fourier transform pairs.  From (1-93) and the

Convolution Theorem, we obtain

[ ]xyR ( ) x*(-t) y(t) X ( )Y( )∗⎡ ⎤τ = ∗ = ω ω⎣ ⎦F F . (1-94)

For autocorrelation we have

[ ] [ ] 2
xG( ) R ( ) x*(-t) x(t) X ( )X( ) X( )∗ω = τ = ∗ = ω ω = ωF F , (1-95)

the energy density spectrum of energy signal x(t).  Hence, the Fourier transform of the

autocorrelation is the energy density spectrum.

Cross Correlation and Autocorrelation of Power Signals

First, we define a time averaging operation as

T
TT

1z(t) limit z(t) dt
2T −→∞

= ∫ . (1-96)

For example, 〈x2(t)〉 is the average power in power signal x(t).

Let v(t) and w(t) be power signals.  The average 〈v*(t)w(t)〉 is called the scalar product

(or dot product) of v(t) and w(t).  The scalar product may be complex valued; it serves as a

measure of similarity between the two signals.

We define the cross correlation of power signals v and w as

vwR ( ) v (t)w(t ) v (t )w(t)∗ ∗τ = + τ = − τ . (1-97)
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Note that

vwR ( ) v (t)w(t ) v(t)w (t ) v(t )w (t) w (t)v(t )
∗ ∗ ∗∗ ∗ ∗ ∗τ = + τ = + τ = − τ = − τ , (1-98)

and this implies the symmetry condition

vw wvR ( ) R ( )∗τ = −τ , (1-99)

a formula identical to that previously obtained for energy signals.

The autocorrelation of power signal v(t) is defined as

vR ( ) v (t)v(t ) v (t )v(t)∗ ∗τ = + τ = − τ . (1-100)

It is possible to show

1) ⎮Rv(τ)⎮ ≤ Rv(0) = Avg Pwr {v(t)}, so ⎮Rv(τ)⎮ has its maximum at τ = 0 (this follows from 

(1-102)).

2) Since v vR ( ) R ( )∗ −τ = τ , if v(t) is real-valued, then Rv(τ) will be real-valued and even so that 

Rv(τ) = Rv(-τ).

3) If v(t) is T-periodic, then Rv(τ) is T-periodic.

4) If v(t) does not contain discrete frequency sinusoidal components then

2
vlimit R ( ) v(t) DC Power in v(t)

τ→∞
τ = = . (1-101)

Given power signals x(t) and y(t), we can show
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xy x y
1R ( ) R (0) R (0)
2
⎡ ⎤τ ≤ +⎣ ⎦ . (1-102)

This result can be proved in a manner that is identical to that used to establish (1-89) for the

energy signal case.  Equation (1-102) establishes an upper bound on the cross correlation of two

power signals.  Note that ⎮Rxy(τ)⎮ may have a maximum for τ ≠ 0.

The fact that Rvw(τ) and Rv(τ) always exists for all τ follows from Schwarz’s Inequality, a

result that is proved below.  Schwarz’s Inequality states that

2 2 2v(t)w *(t) v(t) w(t)≤ (1-103)

for any power signals v and w.  Now, the right-hand side of this last results is the product of the

average powers in the two signals.  Since the signals have finite average power, we conclude that

⎮Rvw(τ)⎮, which is the square root of the left-hand side of (1-103), exists (i.e., it is finite).

Schwarz’s Inequality

Let Pv and Pw denote the average powers of power signals v(t) and w(t), respectively.

Then we have

v w

2 2 2

P P

v(t)w *(t) v(t)  w(t)≤
��	�
 ��	�


. (1-104)

(w*(t) can be replaced with w(t) and the inequality still holds).

Proof:  Define the power signal

z(t) v(t) w(t)= − α , (1-105)

where α is a to-be-defined complex number.  The average power in z(t) is
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z

v w

P z(t)z (t) {v(t) w(t)}{v (t) w (t)}

P 2 Re v(t)w (t) P 0

∗ ∗ ∗ ∗

∗ ∗ ∗

= = − α − α

⎡ ⎤= − α + αα ≥⎢ ⎥⎣ ⎦

, (1-106)

where we have used 〈v(t)w∗(t)〉 = 〈v∗(t)w(t)〉∗.  Now, set α = 〈v(t)w∗(t)〉/Pw and obtain

2 2

z v w2w w

2

v
w

v(t)w (t) v(t)w (t)
P P 2 Re   P 0

P P

v(t)w (t)
P 0

P

∗ ∗

∗

⎡ ⎤
⎢ ⎥

= − + ≥⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= − ≥

(1-107)

from which the desired results (1-104) follows.

Equality in (1-104) holds if, and only if, v(t) is proportional to w(t); that is, equality in

(1-104) holds iff v(t) = kw(t) for some constant k.

Uncorrelated Signals

Two signals v(t) and w(t) are said to be uncorrelated if Rvw(τ) = 0 for all τ.  Let v(t) and

w(t) be uncorrelated and form the sum z(t) = v(t) + w(t).  Then

z

v w

R ( ) {v(t) w(t)}{v (t) w (t)} v(t)v (t) w(t)w (t)

R ( ) R ( )

∗ ∗ ∗ ∗τ = + + = +

= τ + τ

(1-108)

so autocorrelations add.  Hence, for uncorrelated signal, the power of the sum is the sum of the

powers (power obeys superposition for uncorrelated signals: PV+W = PV + PW).

Crosscorrelation of T-periodic Power Signals in Terms of Fourier Series

If x(t) and y(t) are periodic with period T0, then cross correlation Rxy(τ) is periodic with
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period T0.  Furthermore, to calculate the cross correlation, you only need integrate over one

period of the waveforms.  That is, for T0-periodic x(t) and y(t), we can compute

0T
xy 00

1R ( ) x (t)y(t ) dt
T

∗τ = + τ∫ . (1-109)

For the periodic case just considered, we can express the Fourier series of Rxy(τ) in terms

of the Fourier series of x and y.   Express T0-periodic x and y as

0

0

jk t
k

k

jk t
k

k

x(t) e

y(t) e

∞
ω

=−∞

∞
ω

=−∞

= α

= β

∑

∑

, (1-110)

where ω0 = 2π/T0 is the fundamental frequency of the signals.  Then, we can write

0 0 0 0 0

00 0

T T jn t jm t jm
xy n m0 00 0 n m

Tjm j(m n) t
n m 00n m

1 1R ( ) x (t)y(t ) dt dte e e
T T

1e e dt
T

∞ ∞
− ω ω ω τ∗ ∗

=−∞ =−∞

∞ ∞
ω τ − ω∗

=−∞ =−∞

⎛ ⎞ ⎛ ⎞
τ = + τ = α β⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= α β

∑ ∑∫ ∫

∑ ∑ ∫

(1-111)

Now, the complex exponential functions are orthogonal so that

0 0
T j(m n) t
00

1 e dt 1, n m
T

0, n m

− ω = =

= ≠

∫
, (1-112)

and this fact leads to the simple formula
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0jn
xy n n

n
R ( ) e

∞
ω τ∗

=−∞
τ = α β∑ (1-113)

for the T0-periodic cross correlation.  Similarly, T0-periodic x(t) has a T0-periodic autocorrelation

given by

0jn2
x n

n
R ( ) e

∞
ω τ

=−∞
τ = α∑ . (1-114)

Power Spectral Density

We are interested in defining the power spectrum S(ω) of power signal x(t).  The power

spectrum should be a real-valued, nonnegative function.  It should be an even function of ω if x(t)

is real-valued.  Furthermore, the total average power should be obtained by integrating S(ω)/2π

over all frequency, that is, the total average per-ohm power should be obtained from

T 2
avg TT

1 1P limit x(t) dt ( )d (watts)
2T 2

∞
− −∞→∞

= = ω ω
π∫ ∫ S . (1-115)

From (1-115), it is easily seen that the units associated with S(ω) are watts/Hz.

Example 1-10:  Consider a T-periodic power signal x(t).  In a Fourier series, expand x(t) as

0jn t
n

n
x(t) e

∞
ω

=−∞
= ζ∑ . (1-116)

The power spectrum of the T-periodic signal is

2
n 0

n
( ) 2 ( n )

∞

=−∞
ω = π ζ δ ω − ω∑S . (1-117)
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This follows since

2 2
n 0 n avg

n n

1 1( )d 2 ( n )d P
2 2

∞ ∞∞ ∞
−∞ −∞

=−∞ =−∞
ω ω = π ζ δ ω − ω ω = ζ =

π π ∑ ∑∫ ∫S (1-118)

by Parseval’s Theorem.

We seek a general method to represent/compute the power spectrum.  Towards this end,

consider windowing power signal x(t) to form

Tx (t) x(t)rect(t / T)≡ , (1-119)

where

rect(t/T) = 1, T / 2 t T / 2

= 0, otherwise

− < <
(1-120)

is a T-long time window centered at the origin.  Windowed signal xT is an energy signal, and its

Fourier transform is denoted by

[ ]T ( ) x(t)rect(t / T)ω ≡X F . (1-121)

By Parseval’s theorem for Fourier transforms, we have

T / 2 2 2
T TT / 2

1x (t) dt ( ) d
2

∞
− −∞

= ω ω
π∫ ∫ X (1-122)

for all T.  Hence, the average power is given by
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2
T / 2 2 2 T

T TT / 2T T T

( )1 1 1 1limit x (t) dt limit ( ) d limit d
T T 2 2 T

∞ ∞
− −∞ −∞→∞ →∞ →∞

ω⎡ ⎤= ω ω = ω⎢ ⎥π π⎣ ⎦∫ ∫ ∫
X

X . (1-123)

Hence, from (1-115) and (1-123) we see that

2
T

T

( )1 1( )d limit d
2 2 T

∞ ∞
−∞ −∞ →∞

ω
ω ω = ω

π π∫ ∫
X

S . (1-124)

As part of our definition of S, we require that (1-124) hold over arbitrary frequency bands

(frequency intervals).  This requirement leads to

2
T

T

( )1 1( )d limit d
2 2 T

ω ω
−∞ −∞ →∞

ρ
ρ ρ = ρ

π π∫ ∫
X

S (1-125)

for all values of ω.  Basically, we get the power that is contained in the (ω1, ω2) frequency band if

we integrate S(ω)/2π over this band.

Now, we can write a general formula for the power spectrum.  With respect to frequency,

differentiate (1-125) to obtain

2
T

T

( )
( ) limit

T→∞

ω
ω ≡

X
S , (1-126)

an important formula for the power spectrum.

Equation (1-126) suggests a practical way to approximate the power spectrum of a power

signal.  First, a data record of length T is recorded.  Next, the Fourier transform XT(ω) of the time

record xT(t) is computed/approximated (often, by an FFT).  Finally, the power spectrum is

approximated by ⎮XT(ω)⎮2/T, a result that may be plotted as a function of frequency ω.
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Example 1-11:  Use (1-126) with a large value of T to approximate the power spectrum of

power signal Aexp(jω0t).  How does the approximation behave as T approaches infinity?  First,

consider the windowed signal xT = Aexp(jω0t)rect(t/T) with transform

[ ] [ ]T 0 0( ) Aexp(j t)rect(t/T) AT Sa ( )T / 2ω ≡ ω = ω − ωX F (1-127)

so that for large, finite T we have

[ ]
2

2T 2
0

( )
( ) A T Sa ( )T / 2

T
ω

⎡ ⎤ω ≈ ω − ω⎣ ⎦
X

 =S (1-128)

as our approximation to the power spectrum.  This approximation is illustrated by Figure 1-15;

note that the base width is proportional to 4π/T and the height is proportional to A2T.   In the

limit as T → ∞, this last equation produces

 Width ≈ 4π/T

ωω0

A2T

2
2

0
TS( ) A T Sa[( ) ]2

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

ω ≈ ω−ω

Figure 1-15: Approximation to power spectrum.  The
approximation approaches 2πA2δ(ω-ω0) as T → ∞.
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[ ]

[ ]

2
2T 2

0
T T

2 2 2
0 0

T

( )
( ) limit A limit T Sa ( )T / 2

T

T2 A limit Sa ( )T / 2 2 A ( )
2

→∞ →∞

→∞

ω
⎡ ⎤ω = ω − ω⎣ ⎦

= π ω − ω = π δ ω − ω
π

X
 =S

(1-129)

as the power spectrum.

System Input - Output Cross Correlation and Output Autocorrelation

Let x(t) and y(t) denote the input and output, respectively, of a linear, time-invariant

system having h(t) as its impulse response.  We show that Rxy(t) = h(t)∗Rx(t) for the case where x

and y are energy signals; the result is true for power signals as well.  Let x and y be energy signals

and observe

xy

x

R ( ) x (t)y(t )dt x (t) h(u)x(t u)du dt

h(u) x (t)x(t u)dt du

h(u)R ( u)du .

∞ ∞ ∞∗ ∗
−∞ −∞ −∞

∞ ∞ ∗
−∞ −∞

∞
−∞

⎡ ⎤τ = + τ = + τ −⎢ ⎥⎣ ⎦

⎡ ⎤= + τ −⎢ ⎥⎣ ⎦

= τ −

∫ ∫ ∫

∫ ∫

∫

(1-130)

Hence, it follows that Rxy(τ) = h(τ)∗Rx(τ) as claimed.  As stated previously, this result holds for

power signals as well as energy signals.

It is possible to compute the output autocorrelation from knowledge of the input

autocorrelation and the system’s impulse response.  To see how this is done, consider

yR ( ) y (t)y(t )dt h (u)x (t u)du y(t )dt

h (u) x (t u)y(t )dt du.

∞ ∞ ∞∗ ∗ ∗
−∞ −∞ −∞

∞ ∞∗ ∗
−∞ −∞

⎡ ⎤τ = + τ = − + τ⎢ ⎥⎣ ⎦

⎡ ⎤= − + τ⎢ ⎥⎣ ⎦

∫ ∫ ∫

∫ ∫
(1-131)
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In this result replace the t variable with v ≡ t - u to obtain

y

xy

xy

R ( ) h (u) x (v)y(v u )dv du

h (u)R (u )du

h ( u)R ( u)du ,

∞ ∞∗ ∗
−∞ −∞

∞ ∗
−∞

∞ ∗
−∞

⎡ ⎤τ = + + τ⎢ ⎥⎣ ⎦

= + τ

= − τ −

∫ ∫

∫

∫

(1-132)

the convolution of h*(-τ) and RXY(τ).  Now, from the previous page we have

[ ]

[ ]

y xy x

x

R (t) R (t) h( t) h(t) R (t) h( t)

h(t) h( t) R (t) ,

= ∗ − = ∗ ∗ −

= ∗ − ∗
(1-133)

so that the autocorrelation of the output can be expressed as the autocorrelation of the input

convolved with h(τ)∗h*(-τ).

Power Spectrum as Fourier Transform of Autocorrelation - The Wiener-Khinchine Theorem

Recall that the power spectrum of power signal x(t) is

2
T

T

X ( )
( ) limit

T→∞

ω
ω =S . (1-134)

Take the inverse Fourier transform of S to obtain
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[ ]

1 2

1 2

2
T-1 j

T

T / 2 T / 2j t j t j
1 1 2 2T / 2 T / 2T

T / 2 T / 2 j (t t )
1 2 2 1T / 2 T / 2T

X ( )1 limit e d( )
2 T

1 1limit x (t )e dt x(t )e dt e d
2 T

1 1limit x (t ) x(t ) e d dt dt
T 2

∞ ωτ
−∞ →∞

∞ ω − ω∗ ωτ
−∞ − −→∞

∞ ω − +τ∗
− − −∞→∞

ω
= ωω

π

⎡ ⎤ ⎡ ⎤= ω⎣ ⎦ ⎣ ⎦π

⎡ ⎤= ω⎣ ⎦π

∫

∫ ∫ ∫

∫ ∫ ∫

F S

. (1-135)

However, from Fourier transform theory we know that

1 2j (t t )
1 2

1 e d (t t )
2

∞ ω − +τ
−∞

ω = δ − + τ
π ∫ . (1-136)

Now, use (1-136) in (1-135) to obtain

[ ] T / 2 T / 2-1
1 2 1 2 2 1T / 2 T / 2T

T / 2
T / 2T

x

1limit x (t ) x(t ) (t t )dt dt( )
T

1limit x (t)x(t )dt x (t)x(t )
T

R ( )

∗
− −→∞

∗ ∗
−→∞

= δ − + τω

= + τ = + τ

= τ

∫ ∫

∫

F S

.

This is the well-known, and very useful, Wiener-Khinchine Theorem: the Fourier transform of the

autocorrelation is the power spectrum density.  Symbolically, we write

xR ( ) ( )τ ←⎯→ ωS . (1-137)

Power Signals in Systems: Input/Output of Power Spectrums

Suppose power signal x(t) is input to a linear, time-invariant system to produce y(t), the

output power signal.  How can we find the output power spectrum in terms of the input power
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spectrum?  By the Wiener-Kinchine theorem, we can write the power spectrum of output y(t) as

yy R ( )( ) τ⎡ ⎤ω = ⎣ ⎦FS . (1-138)

Use the fact that Ry(τ) = [h(t)∗h*(-t)]∗Rx(τ) to write

( ) [ ]yy x xR ( )( ) R ( ) R ( )h(t) h ( t) h(t) h ( t)∗ ∗⎡ ⎤τ ⎡ ⎤⎡ ⎤ω = = ∗ τ = τ∗ − ∗ −⎣ ⎦ ⎣ ⎦⎣ ⎦F F F FS . (1-139)

However, F [h*(-t)] = H*(jω) so that

[ ]y xx

2
x

( ) H (j )H( j ) ( )R ( )h(t) h ( t)

( )H( j )

∗∗⎡ ⎤ω = = ω ω ωτ∗ −⎣ ⎦

= ωω

F FS S

S

, (1-140)

an important result that is used in many applications in signal processing, radar, etc (see Fig. 1-

16).

Periodic Signals

Let x(t) be T-periodic with Fourier series expansion

0jk t
k

k
x(t) e

∞
ω

=−∞
= α∑ , (1-141)

h(t)x(t) y(t)

Input Power Spectrum Sx(ω) Output Power Spectrum Sy(ω)

Figure 1-16: Linear system.  Output spectrum is related to input spectrum
by Sy(ω) = ⎮H(jω)⎮2 Sx(ω).
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where ω0 = 2π/T.  Recall from (1-114) that the autocorrelation of x is

0jn2
x n

n
R ( ) e

∞
ω τ

=−∞
τ = α∑ . (1-142)

From the Wiener-Kinchine Theorem we have the power spectrum as

[ ] 0jn2 2
x 0n n

n n
( ) R ( ) e 2 ( n )

∞ ∞
ω τ

=−∞ =−∞

⎡ ⎤ω = τ = = π δ ω − ωα α
⎣ ⎦∑ ∑F FS . (1-143)

Note that all of the power is concentrated at DC and the various discrete frequency components

in the signal.

Signals and Systems

A system is a mapping between an input x(t) and an output y(t).  Notice that our system,

depicted by Fig. 1-17, has a single input and a single output.  It is possible to generalize this

concept to systems with multiple inputs and outputs.

Linearity

The system is said to be linear if it obeys superposition.  Let x1 and x2 be arbitrary inputs;

assume that x1 and x2 produce outputs y1 and y2, respectively.  Then the system is said to linear if,

for any constants α and β, the input αx1 + βx2 produces the output αy1 + βy2.

Let h(t,τ) denote the system’s response at time t to an δ function applied at time τ, an

input/output relationship depicted by Fig. 1-18.  Function h(t,τ) is called the system’s impulse

response.  It is well-known that the system’s output y(t) is given by

L[  ]
x(t) y(t) = L[x(t)]

Figure 1-17:  A system with input x(t) and output y(t).
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y(t) h(t, )x( )d , t
∞
−∞

= τ τ τ −∞ < < ∞∫ . (1-140)

As discussed below, this input-output (I/O) relationship can take on various forms depending on

the system properties of time invariance and causality.

Time Invariance

Let x(t) and y(t) be an arbitrary input/output pair.  The system is said to be time invariant

if input x(t - t0) produces output y(t - t0) for any time shift t0.  This idea is conveyed by Figure 1-

19.  For a time-invariant system, the output at time t to an input applied at time τ depends on the

time difference t - τ and not on the absolute value of t or τ.  For this reason, h(t, τ) = h(t - τ), and

L[  ]

tτ

δ(t-τ)

t

h(t;τ)

Input OutputSystem

Figure 1-18:  An impulse applied at time τ produces h(t,τ) at time t.

x(t)

t

y(t)

t

L[ ]

x(t-t0)

t

y(t-t0)

t

L[ ]

t0 t0

IF:

THEN:

Figure 1-19:  Time-invariance: if y(t) = L[x(t)] are any input-output pair,
then y(t-t0) = L[x(t-t0)] for any t0.
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the input-output relationship (1-140) becomes

y(t) h(t )x( )d , t
∞
−∞

= − τ τ τ −∞ < < ∞∫ , (1-141)

since the impulse response depends on the time difference and not absolute t or τ.  Equation

(1-141) states that output y(t) is the convolution of input x(t) and impulse response h(t).

Causality

Let x1(t) and x2(t) be arbitrary inputs which produce outputs y1(t) and y2(t), respectively.

The system is said to be causal if x1(t) = x2(t), t < t0, for any t0, implies that y1(t) = y2(t) for t < t0.

Note that x1(t), x2(t) and t0 are not system dependent (they are arbitrary except for the

requirement that x1(t) = x2(t), t < t0 for some t0).  Basically, a causal system cannot respond before

it is excited; its output y at time t does not depend on input x at time greater than t.

One can show that a linear, time-invariant system is causal if, and only if, its impulse

response h(t) vanishes for t < 0.  That is, a necessary and sufficient condition for causality is

h(t) 0, t 0= < . (1-142)

For linear, time-invariant causal systems, relationship (1-141) becomes

t
y(t) h(t )x( )d , t

−∞
= − τ τ τ −∞ < < ∞∫ , (1-143)

where it is assumed that input x(t) starts (was initially applied) in the infinite past.

Bounded Input - Bounded Output Stability (BIBO Stability)

A linear system is said to be bounded input - bounded output stable (BIBO stable) if

bounded inputs always produce bounded outputs.  It can be shown that a linear, time-invariant

system is BIBO stable if, and only if,



Class Notes EE426/506 10/04/07 John Stensby

Lattest Updates at http://www.ece.uah.edu/courses/ee426/ 1-49

h(t) dt
∞
−∞

< ∞∫ . (1-144)

That is, the system is BIBO stable if, and only if, h(t) is absolutely integrable.

Transfer Function

Linear, time-invariant systems can be described in the frequency domain by using the

Fourier transform.  Take the Fourier transform of (1-141) to obtain

Y( ) H( )X( )ω = ω ω , (1-145)

where Y, H and X are Fourier transforms of y, h and x, respectively.  H(ω) is called the transfer

function of the system.  If h(t) is real-valued, then Re[H(ω)] is even and Im[H(ω)] is odd (so that

⎮H(ω)⎮ is even and (H(ω) is odd).  A plot of ⎮H(ω)⎮ is called the double-sided amplitude

response, and a plot of (H(ω) is called the double-sided phase response.

Example 1-12:  Consider the circuit depicted by Figure 1-20.  A relationship between input x and

output y is given by

dyRC y x
dt

+ = . (1-146)

From elementary ordinary differential equation theory, the complete solution of (1-146) is given

by

C

R

x(t) y(t)

+ +

- -
Figure 1-20:  A simple first-order system
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0 0 0 0
0

t(t t ) / ( t ) /
0 0t0

1y(t) e e x( ) d y(t ) , t t− − τ λ− τ⎡ ⎤
= λ λ + ≥⎢ ⎥τ⎣ ⎦

∫ , (1-147)

where τ0 = RC is the circuit time constant, and y(t0) is the initial voltage across the capacitor at t

= t0.

Assume that all initial conditions are zero.  From (1-147), the output for t ≥ 0 is given by

t
0

y(t) h(t )x( ) d , t 0= − λ λ λ ≥∫ , (1-148)

where

0t /

0

1h(t) e U(t)− τ=
τ

(1-149)

is the circuit impulse response.

The transfer function of this system is given by

0

1H( ) [h(t)]
1 j /

ω = =
+ ω ω

F , (1-150)

where ω0 = 1/RC is the 3dB cut off frequency of the filter.

Periodic Response to Periodic Input

A T-periodic response can be obtained from a linear, time-invariant system that is driven

by a T-periodic forcing function.  Let the input x(t) be represented as

0jn t
n

n
x(t) c e

∞
ω

=−∞
= ∑ . (1-151)
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Let the system impulse response be h(t) so that the output can be computed as

0 0 0

0

jn (t ) jn jn t
n n

n n

jn t
0 n

n

y(t) c e h( )d e h( )d c e

H(n )c e

∞ ∞∞ ∞ω −τ − ω τ ω
−∞ −∞

=−∞ =−∞

∞
ω

=−∞

⎡ ⎤⎡ ⎤= τ τ = τ τ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

= ω

∑ ∑∫ ∫

∑

, (1-152)

where H(ω) = F [h(t)], the Fourier transform of the impulse response (i.e., the transfer function).

Note that cnH(nω0), -∞ < n < ∞, are the Fourier series coefficients of the periodic output.

For the simple case where x(t) = Acos(ω0t), the output is

0 0 0 0j t j t j{ t H( )}
0 0 0

0 0 0

Ay(t) H( )e H( )e A Re H( ) e
2

A H( ) cos{ t H( )}

ω − ω ω + ω⎡ ⎤ ⎡ ⎤= ω + −ω = ω
⎣ ⎦ ⎣ ⎦

= ω ω + ω

(

(

. (1-153)

Piecewise Description of Periodic Response

Often, with simple first- and second-order systems, you can “piece together” a periodic

solution by using simple techniques.

Example 1-13:  Consider the RC network depicted by Figure 1-20 with R = 1 Ohm and C = 1

Farad.  Suppose input x(t) is a T-periodic square wave that toggles between ±1.  When x = 1, the

capacitor is charging up, and the capacitor voltage is increasing exponentially with a time constant

τ0 = RC = 1 second.  When x = -1, the capacitor is discharging, and the capacitor voltage is

exponentially decreasing.  Figure 1-21 depicts one period of the input and anticipated response.

The peak output, α, must be computed.

From (1-147) with τ0 = RC = 1 and y(0) = -α, we can write

T / 2T / 2
0

y(T / 2) e e d− τ⎡ ⎤= τ − α = α⎢ ⎥⎣ ⎦∫ . (1-154)
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Integrate the exponential in (1-154) and obtain

T / 2

T / 2
1 e
1 e

−

−
−α =
+

(1-155)

for α.  Over the range 0 ≤ t ≤ T/2, the output can be expressed as

tt t
0

y(t) e e d 1 (1 )e , 0 t T / 2− τ −⎡ ⎤= τ − α = − + α ≤ ≤⎢ ⎥⎣ ⎦∫ . (1-156)

On the second-half of the period, the output can be expressed as

t(t T / 2) ( T / 2) (t T / 2)
T / 2

y(t) e e d 1 (1 )e , T / 2 t T− − τ− − −⎡ ⎤= − τ + α = − + + α ≤ ≤⎢ ⎥⎣ ⎦∫ . (1-157)

In (1-156) and (1-157), use α given by (1-155).  The T-periodic output is simply a periodic

Time (Seconds)

T

0

Input

Output

α

α

Figure 1-21:  Square wave input shown as solid-line graph.  RC
circuit output shown as dashed line graph.  Value of α is dependent on
R, C and T, and it must be computed.
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extension of the waveform described by  (1-156) and (1-157).  Figures 1-22 and 1-23 depict one

period of the output for T = 4 and T = 20, respectively.  The simple techniques that were used

here for the RC circuit can be applied to a wide number of first- and second-order systems

subjected to a wide variety of periodic inputs.

Ideal Low-Pass Filter

An ideal low-pass filter (LPF) has a transfer function given by

0j t
lp c cH ( ) Ae ,

,
0, otherwise

− ωω = −ω < ω < ω

=
(1-158)

where A > 0, t0 > 0 and bandwidth ωc are known.  Figure 1-24 depicts the magnitude and phase

response of an ideal LPF.  Within the pass band, the amplitude is constant and the phase is linear.

The impulse response of the ideal LPF is

-1 c c 0 c
lp lp c 0

0

A sin (t t ) Ah (t) H ( ) Sa{ (t t )}
(t t )

ω ω − ω⎡ ⎤= ω = = ω −⎣ ⎦ π − π
F , (1-159)
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Response When T = 20 Seconds

Figure 1-23:  One period of the output for
the case T = 20 seconds.
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Figure 1-22:  One period of the output for
the case T = 4 seconds.
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where Sa(x) = sin(x)/x.  Figure 1-25 depicts the general form of (1-159).  Note that the ideal LPF

is non-causal, which implies that real-time, ideal low-pass filters cannot be implemented.

Ideal High-Pass Filter

An ideal high-pass filter (LPF) has a transfer function given by

0j t
hp c

c

H ( ) Ae ,
,

0,

− ωω = ω > ω

= ω < ω
(1-160)

t (Sec)
0 t0

cAω
π

c c 0lp
Ah (t) Sa (t t )⎡ ⎤⎣ ⎦

ω= ω −
π

Figure 1-25:  Impulse response of an ideal low-pass filter.

⎮Hlp(jω)⎮
A

ωc−ωc

( Hlp(jω)

-t0

Figure 1-24:  Magnitude and phase response of an ideal
low-pass filter.  A and t0 are known quantities.
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where A > 0, t0 > 0 and ωc are known.  Figure 1-26 depicts the magnitude and phase response of

an ideal HPF.  Note that

0j t
hp lpH ( ) Ae H ( )− ωω = − ω , (1-161)

so that the impulse response of an ideal high-pass filter is given by

-1 c
hp hp 0 c 0

Ah (t) H ( ) A (t t ) Sa{ (t t )}ω⎡ ⎤= ω = δ − − ω −⎣ ⎦ π
F , (1-162)

as shown by Figure 1-27.

Ideal Band-Pass Filter

A band-pass filter passes signals contained in a band centered at some frequency ω0.  An

ideal band-pass filter (BPF) has a transfer function given by

0j t
bp 0 c 0 cH ( ) Ae , or

,
0, otherwise

− ωω = ω − ω < ω ω + ω < ω

=
(1-163)

⎮Hhp(jω)⎮
A

ωc−ωc

( Hhp(jω)

-t0

Figure 1-26:  Transfer function of an ideal high-pass filter.
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where A > 0, t0 > 0, ω0 > 0 and ωc > 0 are known.  Figure 1-28 depicts the magnitude and phase

response of an ideal BPF.  Note that

0 0 0 0j t j t
bp lp 0 lp 0H ( ) H ( )e H ( )e− ω + ωω = ω − ω + ω + ω , (1-164)

so that the impulse response of an ideal high-pass filter is given by

t (Sec)

0 t0

Aδ(t-t0)

c c0 0hp
Ah (t) A (t t ) Sa{ (t t )}ω= δ − − ω −

π

cAω
π

Figure 1-27:  Impulse response of an ideal high-pass filter.

⎮Hbp(jω)⎮
A

−ω0 ω0

2ωc

ω0−ω0

(Hbp(jω)

-t0

Figure 1-28:  Magnitude and phase response of an ideal band-pass filter.
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[ ]

0 0 0 0
0 0 0 0

j (t t ) j (t t )
j (t t ) j (t t )

bp lp lp lp

lp 0 0

e eh (t) h (t)e h (t)e 2h (t)
2

2h (t)cos (t t )

ω − − ω −
ω − − ω − ⎡ ⎤+= + = ⎢ ⎥

⎢ ⎥⎣ ⎦

= ω −

, (1-165)

see Figure 1-29.

Butterworth Low-Pass Filters

We describe the commonly-used nth-order Butterworth filter.  This is accomplished by

stating the filter magnitude response, filter pole locations, and filter transfer function.

The squared magnitude function for an nth-order Butterworth low-pass filter is

2
2n

c

1H( j ) H( j )H ( j )
1 ( j / j )

∗ω = ω ω =
+ ω ω

, (1-166)

where constant ωc is the 3dB cut-off frequency.  Magnitude ⎮H(jω)⎮ is depicted by Figure 1-30.

It is easy to show that the first 2n-1 derivatives of  ⎮H(jω)⎮2 at ω = 0 are equal to zero.  For this

reason, we say that the Butterworth response is maximally flat at ω = 0.  Furthermore, the

t (Sec)0 t0

0 0bp lph (t) 2h (t)cos (t t )⎡ ⎤⎣ ⎦= ω −
c2Aω

π

Figure 1-29:  Impulse response of an ideal band-pass filter.
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derivative of the magnitude response is always negative for positive ω, the magnitude response is

monotonically decreasing with increasing ω.

We require h(t) to be real-valued and causal.  This requirement leads to

j t j t
0 0

H (j ) h(t)e dt h(t)e dt H( j )
∗∞ ∞∗ − ω ω⎡ ⎤ω = = = − ω⎢ ⎥⎣ ⎦∫ ∫ , (1-167)

so that

2n
c

1H( j )H( j )
1 ( j / j )

ω − ω =
+ ω ω

. (1-168)

Note that there is no real value of ω for which H(ω) = ∞.  That is, H(jω) has no poles on the jω-

axis of the complex s-plane.

We require the filter to be causal and stable.  Causality requires h(t) = 0, t < 0.  Stability

requires the causal impulse response to satisfy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 ω/ωc

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ag

ni
tu

de n = 2
n = 4

n = 6

⎮H(ω)⎮

Figure 1-30: Magnitude response of an ideal nth-order Butterworth
filter.
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0
h(t) dt

∞
< ∞∫ . (1-169)

Causality and stability requires that the time-invariant filter have all of its poles in the left-half of

the complex s-plane (no jω-axis, or right-half-plane poles).  The region of convergence for H(s) is

of the form Re(s) > σ for some σ < 0, see Figure 1-31.  Hence, H(s) can be obtained from H(jω),

the Fourier transform of the impulse response, by replacing s with jω.  In (1-168), replace jω with

s to obtain

2n
c

1H(s)H( s)
1 (s / j )

− =
+ ω

. (1-170)

As can be seen from inspection of (1-170), the poles of H(s)H(-s) are the roots of 1 +

(s/jωc)2n = 0.  That is, each pole must be one of the numbers

1/ 2n
p cs j ( 1)= ω − . (1-171)

There are 2n distinct values of sp; they are found by multiplying the 2n roots of -1 by the complex

constant jωc.

Re

Im

σ

Region of
Convergence

for H(s)

to −j∞

to +j∞

to ∞

Figure 1-31:  Region of convergence for transform H(s), the s-domain transfer function
of a nth-order Butterworth filter.  Value σ < 0 depends on ωc and n.  All poles of H(s) must
have a real part that is less than, or equal to σ.
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The 2n roots of -1 are obtained easily.  Complex variable z is a 2n root of -1 if

2nz 1= − . (1-172)

Clearly, z must have unity magnitude and phase π/2n, modulo 2π/2n.  Hence, the 2n roots of -1

form the set

{ }2n n1 k ,   k = 0, 1, 2, , 2n-1π π⎡ ⎤+
⎣ ⎦

"( (1-173)

Multiple these roots of -1 by jωc to obtain the poles of H(s)H(-s).  This produces

{ }k c 2 2n np k ,   k = 0, 1, 2, , 2n-1π π π= ω + + "( . (1-174)

as the poles of H(s)H(-s).  Notice that p0, p1, …, pn-1 are in the left-half of the complex plane,

while pn, …, p2n-1 are in the right-half plane.   In the complex plane, these poles are on a circle

(called the Butterworth Circle) of radius ωc, and they are spaced π/n radians apart in angle.  The

poles given by (1-174) are

1) symmetric with respect to both axes,

2) never fall on the jω axis,

3) a pair falls on the real axis for n odd but not for n even,

4) lie on the Butterworth circle of radius ωc where they are spaced π/n radians apart in angle, and

5) half of their number are in the right-half plane and half are in the left-half-plane.

Using (1-174), we can write

0 1 2n 1
2n 0 1 2n 1c

p p p1H(s)H( s)
(s p )(s p ) (s p )1 (s / j )

−

−
− = =

− − −+ ω
"

"
. (1-175)
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Since the poles of H(s) are in the left-half plane, we factor (1-175) to produce

n
0 1 n 1

0 1 n 1

( 1) p p pH(s)
(s p )(s p ) (s p )

−

−

−=
− − −

"
"

, (1-176)

the transfer function of the nth-order Butterworth filter.  So far, we have required a unity DC gain

for the filter (i.e., H(0) = 1).  However, any DC gain can be obtained by simply multiplying

(1-176) by the correct constant.

Example 1-14: Determine the transfer function for a unity-DC-gain, third-order Butterworth

filter with a cut-off frequency of ωc = 1 radian/second.  The Butterworth circle and 6 poles of

H(s)H(-s) are depicted by Figure 1-32.  The poles of H(s) are given by (1-174); these numbers are

2
0 13

2
2 3

p 1 { / 2 / 6} 1 , p 1 { / 2 / 6 / 3} 1

p 1 { / 2 / 6 2 / 3} 1

π

π

= π + π = = π + π + π = π

= π + π + π = −

( ( ( (

( (
. (1-177)

Finally, the s-domain transfer function is given by

Re

Im

× ×

××

×× π/3

ω
c (π/3

ω c(
-π/3

ω c(
2π/3

ω
c (-2π/3

ωc(0ωc(π

Figure 1-32:  Butterworth circle of radius ωc = 1 for a third-order
filter.
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2 2 3 2
3 3

1 1H(s)
(s 1 )(s 1 )(s 1 ) s 2s 2s 1π π= =

− − π − − + + +( ( (
. (1-178)

The Matlab Signal Processing Toolbox has several powerful functions that are useful for

designing Butterworth (and other types of) filters.  For example, the code

N = 3;
W = 1;
[num,den] = butter(N,W,’s’)

will design the 3rd-order Butterworth filter that is discussed in this example.  N is the filter order.

W is the 3dB cut-off frequency, num is a 1×3 vector of numerator coefficients, and dom is a 1×3

vector of denominator coefficients (the coefficient vectors are ordered highest to lowest power of

s).  To try out “butter”, one can type  [num,den]=butter(3,1,'s') at  the Matlab

command prompt to obtain

>> [num,den]=butter(3,1,'s')
num =
         0         0         0    1.0000
den =
    1.0000    2.0000    2.0000    1.0000
>>

Notice that Matlab returns numerator and denominator polynomial coefficients that agree with the

right-hand side of (1-178).

Hilbert Transforms

Consider the filter H(jω), described by Figure 1-33, that has a unity magnitude response

for all frequencies.  Also, the phase response is -π/2 for positive frequencies and π/2 for negative

frequencies.  The transfer function of this filter is

H( j ) jsgn( )ω = − ω . (1-179)
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An engineer might think of a Hilbert transform as a “wide-band, 90 degree phase shift network”.

The impulse response of the filter is

-1 -1 j 1h(t) [H] j [sgn( )] j
t t

⎛ ⎞= = − ω = − =⎜ ⎟π π⎝ ⎠
F F , (1-180)

a result depicted by Figure 1-34.  Note that the filter is non-causal.  When driven by an arbitrary

signal x(t), the filter produces the output

x(u)x̂(t) x h du
(t u)

∞
−∞

= ∗ =
π −∫ (1-181)

The function x̂(t)  is the Hilbert Transform  of x(t).  Note that

[ ]x̂ H( )X( ) jsgn( )X( )= ω ω = − ω ωF , (1-182)

1

⎮Η(jω)⎮

ω

∠ Η(jω)

ω

π/2

−π/2

Figure 1-33:  Magnitude and phase of Hilbert transform operator.
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so that

[ ]-1x̂(t) jsgn( )X( )= − ω ωF . (1-183)

In some cases, this formula allows use of a Fourier transform table to compute the Hilbert

transform.

Example 1-15: Consider x(t) = cos(ω0t) with transform X(jω) = π[δ(ω - ω0) + δ(ω + ω0)].  We

have

[ ]

[ ]

0 0 0

0 0 0

jsgn( )X( ) j ( ) ( ) ,  0

j ( ) ( ) ,  0

− ω ω = π δ ω + ω − δ ω − ω ω >

= π δ ω− ω − δ ω+ ω ω <

so that -jsgn(ω)X(jω) = jπ[δ(ω + ω0) - δ(ω - ω0)]sgn(ω0).  Hence, we can write
n [ ]1

0 0 0x̂(t) cos t jsgn( )X( j ) sgn( ) sin t−= ω = − ω ω = ω ωF (1-184)

h ( t)

t

Figure 1-34:  Impulse response h(t) of Hilbert transform
operator.
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Example 1-16: In a similar manner, we can write

n
0 0 0sin t sgn( ) cos tω = − ω ω (1-185)

Example 1-17: Combine (1-184) and (1-185) to obtain

n n
0 0 0 0 0 0 0 0exp{j t} cos t jsin t sgn( )[sin t jcos t] jsgn( ) exp{j t}ω = ω + ω = ω ω − ω = − ω ω (1-186)

Properties of Hilbert Transforms

1. The energy (or power) in x(t) and x̂(t)  are equal.  This claim follows from

2 2 2 2ˆ[x] jsgn( )X( ) X( ) [x]= − ω ω = ω =F F . (1-187)

Since the energy (or power) density spectrum at the input and output of the filter are the same,

the two energies (or powers) are equal.

2. ˆ̂x(t) x(t)= − .  This claim follows from

[ ]

[ ]

[ ]

-1

-1

-1

ˆ̂ ˆx(t)  jsgn( ) [x(t)]

jsgn( ) jsgn( )X( j )

X( j )

x(t)

= − ω

⎡ ⎤= − ω − ω ω⎣ ⎦

= − ω

= −

F F

F

F

. (1-188)

3. x(t) and x̂(t)  are orthogonal.  For energy signals, we have
T
TT

ˆlimit x(t)x(t)dt 0
−→∞

=∫ . (1-189)
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For power signals, we have

T
TT

1 ˆˆ limit  x(t)x(t)dt 0x(t)x(t)
2T −→∞

≡ =∫ . (1-190)

This claim follows from (proof given for energy signals; proof for power signals is similar)

j t

j t

2

1ˆx(t)x(t)dt x(t) jsgn( )X(j )e d dt
2

1 jsgn( )X( j ) x(t)e dt d
2

j sgn( ) X( j ) d
2

0

∞ ∞ ∞ ω
−∞ −∞ −∞

∞ ∞ ω
−∞ −∞

∞
−∞

⎡ ⎤= − ω ω ω⎢ ⎥π⎣ ⎦

⎡ ⎤= − ω ω ω⎢ ⎥⎣ ⎦π

−= ω ω ω
π

=

∫ ∫ ∫

∫ ∫

∫

(1-191)

since integrand sgn(ω)⎮X(jω)⎮2  is an odd function which is integrated over symmetric limits.

4. If c(t) and m(t) are signals with non-overlapping spectra, where m(t) is low pass and c(t) is high

pass, then

n ˆm(t)c(t) m(t)c(t)= (1-192)

To develop this important result, denote M(jω) = F[m(t)] and C(jω) = F[c(t)] as the Fourier

transform of m and c, respectively.  The fact that the signals have no over-lapping spectrum

implies that there exists a W for which

[ ]

[ ]

( ) m(t) 0,  W

( ) c(t) 0,  W

ω = = ω >

ω = = ω <

M

C

F

F
(1-193)
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since m(t) is low pass and c(t) is high pass.  Use (1-193) and note that

n n
1 2 1 2 1 22

1 2 1 2 1 2 1 22

1m(t)c(t) ( j ) ( j )exp[ j( )t] d d
(2 )

1 ( j ) ( j )[ jsgn( )]exp[ j( )t] d d
(2 )

∞ ∞
−∞ −∞

∞ ∞
−∞ −∞

= ω ω ω + ω ω ω
π

= ω ω − ω + ω ω + ω ω ω
π

∫ ∫

∫ ∫

M C

M C

. (1-194)

Once the quantity sgn(ω1 + ω2) in the integrand of (1-194) is simplified, we will obtain the desired

result.  To simplify (1-194), note that non-overlapping spectra and (1-193) imply

1 1

2 2

( ) 0,  W

( ) 0,  W

ω = ω >

ω = ω <

M

C
. (1-195)

Hence, the integrand of (1-194) is zero for all (ω1, ω2) in the cross-hatched region on Fig 1-35.

More importantly, on the shaded region of the (ω1, ω2) plane, the integrand is non-zero, and we

can write

1 2 2sgn( ) sgn( )ω + ω = ω (1-196)

for all (ω1, ω2) in the shaded (but not the cross-hatched!) region illustrated on Figure 1-35.

Finally, use of simplification (1-195) in Equation (1-194) yields the desired result
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1 1 1 2 2 2 2
1 1m(t)c(t) ( ) exp[ j t]d ( )[ jsgn( )]exp[ j t] d

2 2

ˆm(t)c(t)

∞ ∞
−∞ −∞

⎡ ⎤ ⎡ ⎤= ω ω ω ω − ω ω ω⎢ ⎥ ⎢ ⎥π π⎣ ⎦ ⎣ ⎦

=

∫ ∫M C

which is (1-192).

5. Since the impulse response h(t) does not vanish for t < 0, the Hilbert transform is a non-causal

linear operator.

6. If x(t) is an even (alternatively, odd) function then x̂(t)  is an odd (alternatively, even) function.

Proof: This claim follows easily from Fourier transform theory.  If x(t) is an even function of t,

then we have

j tX( j ) x(t)e dt x(t) cos t dt j x(t)sin t dt x(t) cos t dt
∞ ∞ ∞ ∞− ω
−∞ −∞ −∞ −∞

ω = = ω − ω = ω∫ ∫ ∫ ∫ , (1-197)

-W W

-W

W

ω1-axis

ω2-axis

ω1+ω2 > 0ω1+ω2 > 0

ω1+ω2 < 0ω1+ω2 < 0

Figure 1-35:  Integrand of (1-194) is zero in the cross-hatched region.  In the upper-half plane
shaded region, we have U(ω1 + ω2) = 1.  In the lower-half plane shaded region, we have U(ω1 + ω2)
= -1.
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an even function of ω.  Hence, -jsgn(ω)X(jω) is an odd function of ω.  As a result, we have

[ ]-1 j t1x̂(t) = jsgn( )X(j ) { jsgn( )X(j )}e d
2

1 sgn( )X( j )sin t d
2

∞ ω
−∞

∞
−∞

− ω ω = − ω ω ω
π

= ω ω ω ω
π

∫

∫

F

(1-198)

as an odd function of t.

Analytic Signal

Let x(t) be a real-valued signal.  The analytic signal (also called the pre-envelope) for x(t)

is defined as

p ˆx (t) x(t) jx(t)≡ + . (1-199)

The analytic signal for any given signal is denoted by placing a subscript p on the symbol that

represents the signal (i.e., corresponding to signal z is an analytic signal denoted by zp).  The

analytic signal is used in the analysis of communication systems.  Note that xp can be written as

1 1
p 2 2 tx (t) x(t) 2 (t) j π

⎡ ⎤= ∗ δ +⎣ ⎦ (1-200)

Hence, the Fourier transform of xp is

[ ] 1 1
p p 2 2 tX ( j ) x x(t) 2 (t) j 2X( j )U( )π

⎡ ⎤⎡ ⎤ω ≡ = ⋅ δ + = ω ω⎣ ⎦ ⎣ ⎦F F F , (1-201)

where U(ω) is a unit step in the frequency domain.  On xp and Xp, the subscript p denotes the

“positive part”.
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Given any real-valued signal x(t), we define

n ˆx (t) x(t) jx(t)≡ − . (1-202)

The Fourier transform of xn is

[ ] [ ] 1 1
n n 2 2 tX ( j ) x x(t) 2 (t) j 2X( j )U( )π

⎡ ⎤ω ≡ = ⋅ δ − = ω −ω⎣ ⎦F F F . (1-203)

On xn and Xn, the subscript n denotes the “negative part”.

Narrow-Band Signals and Systems

Narrow-band signals and systems play an important role in communication systems.

Practically all radio-frequency-based communication systems (i.e., radio and TV broadcasting,

civil, military and amateur radio communication systems, etc.) utilize narrow-band signals and

systems.  This section contains some general modeling techniques for narrow-band signals and

systems.

Modeling Band-Pass Signals and Systems

A real-valued band-pass signal xbp(t) can be represented as

bp cx (t) (t)cos( t (t))= Γ ω + φ , (1-204)

where Γ and φ  are known as the envelope and phase, respectively, of the signal.  Also, constant

ωc is known as the carrier frequency of the signal.  This equation can be written as

bp c c s cx (t) x (t) cos t x (t) sin t= ω − ω , (1-205)

where
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c

s

x (t) (t)cos (t)

x (t) (t)sin (t) .

= Γ φ

= Γ φ
(1-206)

The quantities xc and xs are the quadrature components of xbp.

Signal xbp is said to be narrow-band if it has a bandwidth which is small compared to ωc.

The quadrature components xc and xs vary slowly relative to cosωct.  Over any period of cosωct,

the quadrature components are nearly constant; many periods of cosωct must occur before there is

appreciable change in xc and/or xs.  Equivalently, xc and xs are low-pass processes with

bandwidths that are small compared to ωc.

Linear, time-invariant band-pass systems can be treated in much the same manner as

narrow-band signals.  Such a system has an impulse response that can be written as

bp c c s ch (t) h (t) cos t h (t) sin t= ω − ω , (1-207)

where hc and hs are real-valued, low-pass functions.  Equations (1-206) and (1-207) have similar

forms; hence, many of the formal manipulations outlined below can be applied to both band-pass

signals and systems.

A simple example of a narrow-band system, that is used as a filter in many applications, is

depicted by Fig. 1-36.  The transfer function of this simple network is given by

2
0 0 0 c

bp 02 2 2 2 2 2c0 c 0 c 0 c

2 s s 2H (s) 2 ,
(s ) (s ) (s )

α + α α ω⎡ ⎤ ⎡ ⎤= = α −⎢ ⎥ ⎢ ⎥ω⎣ ⎦ ⎣ ⎦+ α + ω + α + ω + α + ω
(1-208)

where α0 ≡ R/2L, ωc ≡ 2 2 1/ 2
n 0( )ω − α , and ωn ≡ 1/ 2(1/LC) .  In most applications, the component

values are chosen so that the narrow-band condition ωn
2 >> α0

2 applies and ωc ≈ ωn.  This filter

has the narrow-band impulse response
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0t-1 0
bp bp 0 c c

c
h (t) H (s) 2 e cos t sin t U(t)−α ⎡ ⎤α⎡ ⎤= = α ω − ω⎢ ⎥⎣ ⎦ ω⎣ ⎦

L . (1-209)

Here, the quadrature components are

c 0 0

2
0

s 0
c

h (t) 2 exp( t ) U(t)

2h (t) exp( t ) U(t),

≡ α −α

α≡ −α
ω

(1-210)

where U(t) denotes the unit step function.

Low-Pass Equivalent Signals and Systems

Consider the band-pass signal (1-205).  This band-pass function has a corresponding low-

pass equivalent (also known as complex envelope) function defined by

lp c sx (t) x (t) jx (t)≡ + . (1-211)

The band-pass function xbp can be written in terms of xlp as

bp lp cx (t) Re[x (t) exp( j t )]= ω , (1-212)

where Re denotes that only the real part of the bracketed expression should be retained.  As

L C

R

+

-

vo

+

-

vi

Figure 1-36: A simple band-pass filter.
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shown below, use of low-pass equivalents simplifies analysis involving band-pass signals and

systems.

A simple relationship can be developed between the Fourier transforms of xlp and xbp.

Equation (1-212) can be written as

bp lp c lp c
1x (t) [x (t) exp( j t ) x (t) exp( j t )]
2

∗= ω + − ω , (1-213)

and the Fourier transform of this signal is (since lp lpx (t) X ( j )∗ ∗↔ − ω )

bp lp c lp c
1X ( j ) [ X ( j j ) X ( j j )]
2

∗ω = ω − ω + − ω − ω , (1-214)

where Xlp denotes the Fourier transform of xlp.  Now, all of the frequency components of low-

pass Xlp(jω) lie within a band whose upper frequency is small compared to ωc.  Hence, Equation

(1-214) leads to the results

bp lp c
1X ( j ) U( ) X ( j j )
2

ω ω = ω − ω , (1-215)

where U(ω) is the unit step function.  Equation (1-215) shows how to use Xlp to obtain the

positive-frequency side of Xbp (use known symmetries to obtain Xbp(ω), -∞ < ω < ∞).

Alternatively, Equation (1-215) can be used to write

,

c
lp bpX ( j ) 2X ( j ) U( )

υ = ω + ω
ω = υ υ⎮

⎮
(1-216)

a formula for Xlp in terms of Xbp.  Equation (1-216) serves as the basis of Fig. 1-37 which

illustrates the relationship between the magnitude and phase of Xlp and Xbp.
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Equation (1-211) defines the low-pass function xlp in terms of the quadrature components

of bandpass xbp.  However, xlp can be expressed directly in terms of this band-pass process.  Take

the inverse Fourier transform of (1-216) and obtain

-1
lp bp c bp c

bp bp c

1 1x (t) x (t) 2 [U( )] exp( j t ) x (t) [ (t) j ] exp( j t )
2 t

ˆx (t) jx (t) exp( j t ),

⎡ ⎤⎡ ⎤= ∗ ω − ω = ∗ δ + − ω⎢ ⎥⎣ ⎦π π⎣ ⎦

⎡ ⎤= + − ω⎣ ⎦

F
(1-217)

where bpx̂  denotes the Hilbert transform of band-pass process xbp.  In (1-217), the quantity xbp +

j bpx̂  is the analytic signal corresponding to xbp;  Equation (1-217) shows that xlp is the analytic

signal translated down to base-band.  Conversely, the analytic signal corresponding to xbp is just

the low-pass equivalent xlp translated up to the carrier frequency (multiply both sides of (1-217)

by exp(jωct) to see this).

Symmetrical Band-Pass Filter

-ωc ωc

a)
⎮Xbp⎮

∠Xbp
Ao

ω

-ωc ωc

b)
⎮Xlp(ω)⎮= 2⎮Xbp(ω+ωc)⎮U(ω+ωc)

∠Xlp(ω) = ∠Xbp(ω+ωc)U(ω+ωc)

2Ao

ω

Figure 1-37:  Magnitude and phase of a) band-pass signal and b) its low-
pass equivalent.
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The magnitude (alternatively, phase) response of a symmetrical band-pass filter has ωc as

an axis of even (alternatively, odd) symmetry.  That is, the filter transfer function satisfies

bp c bp c

bp c bp c

H (j j ) H ( j j )

H ( j j ) H ( j j )

ω + ω = ω − ω

∠ ω + ω = −∠ ω − ω
(1-218)

for ⎮ω⎮ < ωc.  Figure 1-37 illustrates magnitude and phase functions that satisfy (1-218).  Not all

band-pass filter transfer functions satisfy (1-218).  However, as discussed next, band-pass signal

and system analysis can be simplified when condition (1-218) holds (or can be assumed).

A symmetrical band-pass filter has a relatively simple impulse response.  As can be seen

from (1-216), its low-pass equivalent Hlp(jω) has an even magnitude and an odd phase response.

This implies that low-pass equivalent hlp(t) ≡ F -1 [Hlp(jω)] is real-valued, and the band-pass filter

impulse response has the form

bp c ch (t) h (t) cos t= ω . (1-219)

The converse is also true; if hbp(t) has the form given by (1-219) then the filter is symmetrical.

Example 1-18:  Consider again the band-pass filter depicted by Figure 1-36.  Under the

conditions ωc >> α0, Equation (1-210) implies that ⎮hs(t)⎮ << ⎮hc(t)⎮ for all time t, so that hbp(t)

can be approximated as

0t
bp 0 ch (t) 2 e {cos t} U(t)−α≈ α ω . (1-220)

The filter described by (1-220) is symmetrical.  Often, the condition that ωc >> α0 is called the

high Q, or narrow-band condition.

Band-Pass Input/Output
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Apply signal xbp, described by (1-205), to the filter hbp, described by (1-207), to obtain the

band-pass output ybp.  Clearly, ybp can be obtained by convolving xbp and hbp.  However, this is a

messy and laborious operation involving the products of several trigonometric functions.  As

outlined below, a much easier approach to this problem utilizes low-pass equivalent functions.

Let ylp denote the low-pass equivalent of the filter band-pass output.  As shown in this

section, ylp can be computed as

lp lp lp
1y x h
2

= ∗ , (1-221)

a computation that uses only low-pass functions.  Of course, once Equation (1-221) is used to

obtain ylp, the filter band-pass output can be computed as

bp lp cy (t) Re[ y (t) exp( j t)]= ω . (1-222)

This simplified approach to band-pass input/output computations is summarized by Fig. 1-38.

The derivation of (1-221) is straightforward.  First, note that

c c

c c c c

j t j t
bp bp bp lp lp

j t j t j t j t
lp lp lp lp

y x h Re x e Re h e

x e x e h e h e
,

2 2

ω ω

ω − ω ω − ω∗ ∗

⎡ ⎤ ⎡ ⎤= ∗ = ∗
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥= ∗
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(1-223)

a computation requiring the convolution of four band-pass functions.  Two of the convolutions

involve functions of the same frequency (either +ωc or -ωc).  The convolution of the two +ωc

functions is
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( ) ( ) ( )c c c c cj t j t j j (t ) j t
lp lp lp lp lp lpx e h e x ( )e h (t )e d x h e

∞+ ω + ω + ω τ + ω −τ + ω
−∞

∗ = τ − τ τ = ∗∫ . (1-224)

Note that this convolution of band-pass signals is represented as a convolution of low-pass signals

multiplied by a complex exponential.  Likewise, the convolution of the two -ωc functions is

( ) ( ) ( )c c cj t j t j t
lp lp lp lpx e h e x h e− ω − ω − ω∗ ∗ ∗ ∗∗ = ∗ . (1-225)

The two convolutions of opposite-sign frequency functions (one at +ωc and the other at -ωc) is

zero.  To see this, note that

( ) ( )

( )

c c c c

c c

c c

j t j t j j (t )
lp lp lp lp

j2 j t
lp lp

j2 t j t
lp lp

x e h e x ( )e h (t )e d

x ( )e h (t )d e

x (t)e h (t) e

0.

∞ω − ω ω τ − ω −τ∗ ∗
−∞

∞ ω τ − ω∗
−∞

ω − ω∗

∗ = τ − τ τ

⎡ ⎤= τ − τ τ⎢ ⎥⎣ ⎦

⎡ ⎤= ∗⎢ ⎥⎣ ⎦

≈

∫

∫
(1-226)

Now, on the right hand side of (1-226), the convolution in the bracket is that of a narrow-band

signal at 2ωc with a low-pass filter.  The result can be taken as zero since 2ωc is very large

compared to the cut off frequency of the low-pass hlp.  In a similar manner, we find that

( ) ( )c cj t j t
lp lpx e h e 0− ω ω∗ ∗ ≈ . (1-227)

x

(a) (b)

h bp
xlp

h lp

x Re[x e ]

y Re[y e ]
bp lp

t

bp lp
t

c

c

=

=

j

j

ω

ω

*ybp = x hbp bp 2 *ylp = 1 xlp hlp

Figure 1-38: Input/output relationships for a) band-pass functions, and b)
low-pass functions.
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Equation (1-223) can be simplified by using these approximations.  Substitute (1-224)

through (1-227) into (1-223) to obtain

c c

c c

j t j t
bp bp bp lp lp lp lp

j t j t
lp lp lp lp

1 1y x h (x h )e (x h )e
4 4

1 12 Re (x h )e Re (x h )e .
4 2

ω − ω∗ ∗

ω ω

= ∗ = ∗ + ∗

⎡ ⎤ ⎡ ⎤= ∗ = ∗⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (1-228)

Comparing cj t
bp lpy Re y e ω⎡ ⎤=

⎣ ⎦
 with (1-228), we arrive at the desired conclusion

lp lp lp ,
1y x h
2

= ∗ (1-229)

a result that is summarized by Fig. 1-38.

Example 1-19:  Consider the band-pass filter depicted by Fig. 1-36.  Assume that this filter has an

input given by

bp c cx (t) x (t)cos t= ω , (1-230)

where

0
c

1 , 0 t t
x (t)

0 , elsewhere.

≤ ≤⎧⎪= ⎨
⎪⎩

(1-231)

In many applications, this filter is designed so that 1/LC >> (R/2L)2.  Under this condition, the

frequency ωc is approximately equal to 1/ LC , and the filter has a high “Q”.  This high circuit

“Q” condition is assumed to hold here.  As can be seen from (1-210), the high circuit “Q”
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assumption implies that hc(t) >> hs(t) for all time so that

0lp 0 th (t) 2 exp( ) U(t)−α≈ α , (1-232)

and a symmetrical filter can be assumed.  Apply (1-229) to the last two equations and obtain

0 0
lp

0 0 0 0

t1 exp( )           , 0 t t
y (t)

t t[exp( ) 1]exp( ) , t t

−α− ≤ ≤⎧⎪= ⎨
α −α⎪ − <⎩

(1-233)

for the low-pass equivalent of the output.  Finally, the band-pass output is obtained by using

(1-222) to write

0 c 0
bp

0 0 0 c 0

t[1 exp( )]cos t           , 0 t t
y (t)

t t[exp( ) 1]exp( )cos t , t t

−α− ω ≤ ≤⎧⎪= ⎨
α −α⎪ − ω <⎩

. (1-234)

Figure 1-39 depicts an example plot of the response described by (1-234) when α0 = 31.831, ωc =

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
t (Seconds)

-1.0

-0.6

-0.2

0.2

0.6

1.0

y b
p(

t)

Figure 1-39:  Response of LC band-pass filter to a gated sinusoid
for the case α0 = 31.831, ωc = 1000 and t0 = .079..
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1000 and t0 = .079.

Phase and Group Delays of a Band-Pass System

Figure 1-40 depicts the magnitude and phase response of a band-pass system with

characteristics that are of interest in this section.  Within the pass-band of this system, the

magnitude response is almost flat and the phase response is almost linear.  In addition to a

bandwidth specification, times tp and tg can be used to characterize this system.  These quantities

are the subject of this section.

The quantities tp and tg are know as the phase delay and group delay, respectively, of the

band-pass system (alternate terminology exists: Also, tp and tg are known as the system carrier

delay and envelope delay, respectively).  At center frequency ωc, the frequency-normalized phase

is -tp,  and -tg is the slope of the phase characteristic.  In terms of the system transfer function, tp

and tg are expressed as

⎮Hbp(jω)⎮

ωωcωc

Ko

∠ Hbp(jω)

ωc ωc

-tg-ωctp

ω

Figure 1-40:  Phase delay tp and group delay tg of a band-pass system.
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.

c

bp c
p

c

g bp

H ( j )
t

dt [ H ( j )]
d ω = ω

∠ ω
≡ −

ω

≡ − ∠ ω ⎮
ω ⎮

(1-235)

Both of these quantities have units of seconds.

A simple approximation of this band-pass system transfer function is useful in many

applications.  Since phase is nearly linear, it is possible to express

bp c p c gH ( j ) t ( ) t∠ ω ≈ −ω − ω − ω (1-236)

for ω within the pass-band around ωc.  Likewise, since the magnitude is almost constant, the

approximation

bp 0H (j ) Kω ≈ (1-237)

holds for ω within the pass-band.  Hence, within the pass-band centered at ωc, the simple

approximation

bp 0 c p c gH ( j ) K exp j t j( ) t⎡ ⎤ω ≈ − ω − ω− ω⎣ ⎦ (1-238)

follows from (1-236) and (1-237).  Finally, the low-pass equivalent of this system can be

approximated as

lp 0 c p gH ( j ) 2K exp j t j t⎡ ⎤ω ≈ − ω − ω⎣ ⎦ (1-239)

for ω within the pass-band of Hlp.
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Important properties of tp and tg can be obtained by considering the result of applying

band-pass signal

bp d cx (t) x (t)cos t= ω (1-240)

to the system.  Assume that xbp fits within the filter pass-band; that is, Xbp(jω) ≡ F [ xbp] is

approximately zero outside of the nearly flat pass-band of Hbp.  The low-pass equivalent of the

filter output can be approximated (see (1-229)) as

lp lp lp

c p g0 d

1Y (j ) H (j ) X ( j )
2

1 j( t t )2K exp[ ]X ( j ) ,
2

ω = ω ω

− ω + ω⎡ ⎤≈ ω⎣ ⎦

(1-241)

where Xlp(jω) = Xd(jω) ≡ F [ xd].   In the time domain, the inverse of (1-241) is

c plp 0 d gj ty (t) K exp( ) x (t t )− ω≈ − , (1-242)

and the band-pass output of the filter is approximated as

bp lp c 0 d g c pjy (t) Re[ y (t)exp( t)] K x (t t ) cos [t t ] .= ω ≈ − ω − (1-243)

Comparison of (1-240) and (1-243) reveals why tp and tg are known as the system carrier delay

and envelope delay, respectively.    


