
The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 1 of 10

Butterworth Low-Pass Filters

In this article, we describe the commonly-used, nth-order Butterworth low-pass filter.

First, we show how to use known design specifications to determine filter order and 3dB cut-off

frequency.  Then, we show how to determine filter poles and the filter transfer function.  Along

the way, we describe the use of common Matlab Signal Processing Toolbox functions that are

useful in designing Butterworth low-pass filters.

The squared magnitude function for an nth-order Butterworth low-pass filter is

2
a a a 2n

c

1H ( j ) H ( j )H ( j )
1 ( j / j )

∗Ω = Ω Ω =
+ Ω Ω

, (1-1)

where constant Ωc is the 3dB cut-off frequency.  Magnitude ⎮Ha(jΩ⎮ is depicted by Figure 1.

It is easy to show that the first 2n-1 derivatives of ⎮Ha(jΩ⎮2 at Ω = 0 are equal to zero.

For this reason, we say that the Butterworth response is maximally flat at Ω = 0.  Furthermore,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 Ω/Ωc

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ag

ni
tu

de n = 2
n = 4

n = 6

⎮Ha(Ω)⎮

Figure 1: Magnitude response of an ideal nth-order Butterworth filter.



The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 2 of 10

the derivative of the magnitude response is always negative for positive Ω, the magnitude

response is monotonically decreasing with Ω.  For Ω >> Ωc, the magnitude response can be

approximated by

2
a 2n

c

1H ( j )
( / )

Ω ≈
Ω Ω

. (1-2)

Butterworth Filter Design Procedure

We start with specifications for the filter.  Usually, the specifications are given as

p

s

a p 2

a s

1)  the pass-band edge,

2)  the stop-band edge,

13) H ( j ) ,  the maximum pass-band attenuation or ripple,
1

14) H ( j ) ,  the minimum stop-band attenuation or ripple.A

Ω

Ω

Ω =
+ ε

Ω =

(1-3)

These four pieces of known information must be used to compute filter order n, 3dB cut-off

frequency Ωc and filter transfer function Ha(jΩ).  For example, this is the approach used by the

Butterworth design functions in the Matlab Signal Processing Toolbox.

The third specification in (1-3) can be used to write

a p 2n 2
p c

1 1H ( j )
1 ( / ) 1

Ω = =
+ Ω Ω + ε

, (1-4)



The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 3 of 10

a result that leads to (Ωp/Ωc)2n = ε2 and the requirement

p c

logn
log log

ε=
Ω − Ω

, (1-5)

a single equation in the unknowns Ωc and n.  Equation (1-5) can be used to write

c p
1log log log
n

Ω = Ω − ε . (1-6)

We need a second equation in the unknowns Ωc and n.  This second equation is obtained

from the fourth of (1-3), a specification on the stop band.  At stop-band edge, we have

2
a s 2n 2

s c

1 1H ( j )
1 ( / ) A

Ω = =
+ Ω Ω

, (1-7)

a result that leads to (Ωp/Ωc)2n = A2 – 1 or

2

p c

log A 1n
log log

−=
Ω − Ω

. (1-8)

This second equation in the unknowns Ωc and n can be used to write

2
c s

1log log log A 1
n

Ω = Ω − − . (1-9)



The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 4 of 10

With (1-5) and (1-8), we have two equations in the unknowns Ωc and n.  To solve these,

substitute (1-9) into (1-5) and obtain

2
p s

logn 1log log log A 1
n

ε=
Ω − Ω + −

, (1-10)

a result that can be solved for

2

p
s

log
A 1n

log

⎛ ⎞ε⎜ ⎟⎜ ⎟−⎝ ⎠=
Ω⎛ ⎞
⎜ ⎟Ω⎝ ⎠

, (1-11)

a simple formula for the necessary filter order n.  Of course, in the likely event that (1-11) yields

a fractional value, it must be rounded up to the next integer value, so that n is a positive integer.

Using the just-determined integer value of n, we can solve for Ωc by using either (1-6) or

(1-9).  If (1-6) is used, we will meet the third specification (the pass-band specification) in (1-3)

and possibly exceed (because we may have rounded up to obtain an integer for n) the fourth

specification (the stop-band specification).  On the other hand, if (1-9) is used to calculate Ωc, we

will meet the stop-band specification and possibly exceed the pass-band specification.

The Matlab Signal Processing Toolbox function Buttord uses the just-outlined

approach.  Using the Matlab definitions

Wp for the pass-band edge in radians/second

Ws for the stop-band edge in radians/second

Rp for the maximum pass-band ripple (the attenuation, in dB, at Wp)

Rs for the minimum stop-band ripple (the attenuation, in dB, at Ws),



The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 5 of 10

we compute filter-order n and 3dB down frequency Wc with the command-line statement

[n,Wc] = buttord(Wp,Ws,Rp,Rs,’s’) (1-12)

Matlab rounds up (1-11) to determine n and uses (1-9) to compute Wc.  So, buttord selects n

and Wc to meet the stop-band specification and (possibly) exceed the pass-band specification.

Filter Transfer Function Ha(jΩ)

Next, we must obtain the transfer function Ha(jΩ) for the just-computed values of n and

Ωc.  Note that we require impulse response ha(t) to be real-valued and causal.  This requirement

leads to

j t j t
a a a a0 0

H ( j ) h (t)e dt h (t)e dt H ( j )
∗∞ ∞∗ − Ω Ω⎡ ⎤Ω = = = − Ω⎢ ⎥⎣ ⎦∫ ∫ , (1-13)

so that

a a 2n
c

1H ( j )H ( j )
1 ( j / j )

Ω − Ω =
+ Ω Ω

. (1-14)

Note that there is no real value of Ω for which Ha(Ω) = ∞.  That is, Ha(jΩ) has no poles on the

jΩ-axis of the complex s-plane.

We require the filter to be causal and stable.  Causality requires ha(t) = 0, t < 0.  Causality

and stability require



The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 6 of 10

a0
h (t) dt

∞
< ∞∫ . (1-15)

Causality and stability requires that the time-invariant filter have all of its poles in the left-half of

the complex s-plane (no jΩ-axis, or right-half-plane poles).  The region of convergence for Ha(s)

is of the form Re(s) > σ for some σ < 0, see Figure 2.  Hence, Ha(s) can be obtained from Ha(jΩ),

the Fourier transform of the impulse response, by replacing s with jΩ.  In (1-14), replace jΩ with

s to obtain

a a 2n
c

1H (s)H ( s)
1 (s / j )

− =
+ Ω

. (1-16)

As can be seen from inspection of (1-16), the poles of Ha(s)Ha(-s) are the roots of 1 +

(s/jΩc) = 0.  That is, each pole must be one of the numbers

1/ 2n
p cs j ( 1)= Ω − . (1-17)

Re

Im

σ

Region of
Convergence

for Ha(s)

to −j∞

to +j∞

to ∞

Figure 2:  Region of convergence for transform Ha(s), the s-domain transfer function of a nth-
order Butterworth filter.  Value σ < 0 depends on cut-off frequency Ωc and filter order n.  All
poles of Ha(s) must have a real part that is less than, or equal to, σ.



The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 7 of 10

There are 2n distinct values of sp; they are found by multiplying the 2n roots of -1 by the

complex constant jΩc.

The 2n roots of -1 are obtained easily.  Complex variable z is a 2n root of -1 if

2nz 1= − . (1-18)

Clearly, z must have unity magnitude and phase π/2n, modulo 2π.  Hence, the 2n roots of -1

form the set

{ }2n n1 k ,   k = 0, 1, 2, , 2n-1π π⎡ ⎤+
⎣ ⎦

"( . (1-19)

Multiply these roots of -1 by jΩc to obtain the poles of Ha(s)Ha(-s).  This produces

{ }k c 2 2n np k ,   k = 0, 1, 2, , 2n-1π π π= Ω + + "( . (1-20)

as the poles of Ha(s)Ha(-s).  Notice that p0, p1, …, pn-1 are in the left-half of the complex plane,

while pn, …, p2n-1 are in the right-half plane.   In the complex plane, these poles are on a circle

(called the Butterworth Circle) of radius Ωc, and they are spaced π/n radians apart in angle.  The

poles given by (1-20) are

1) symmetric with respect to both axes,

2) never fall on the jΩ axis,

3) a pair falls on the real axis for n odd but not for n even,

4) lie on the Butterworth circle of radius Ωc where they are spaced π/n radians apart in angle, and



The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 8 of 10

5) half of their number are in the right-half plane and half are in the left-half-plane.

Using (1-20), we can write

0 1 2n 1
a a 2n 0 1 2n 1c

p p p1H (s)H ( s)
(s p )(s p ) (s p )1 (s / j )

−

−
− = =

− − −+ Ω
"
"

. (1-21)

Since the poles of Ha(s) are in the left-half plane, we factor (1-21) to produce

n
0 1 n 1

a
0 1 n 1

( 1) p p pH (s)
(s p )(s p ) (s p )

−

−

−=
− − −

"
"

, (1-22)

the transfer function of the nth-order Butterworth filter.  So far, we have required a unity DC gain

for the filter (i.e., Ha(0) = 1).  However, any DC gain can be obtained by simply multiplying

(1-22) by the correct constant.

Example: Determine the transfer function for a unity-DC-gain, third-order Butterworth filter

with a cut-off frequency of Ωc = 1 radian/second.  The Butterworth circle, and 6 poles of

Ha(s)Ha(-s), are depicted by Figure 3.  The poles of Ha(s) are given by (1-20); these numbers are

2
0 13

2
2 3

p 1 { / 2 / 6} 1 ,   p 1 { / 2 / 6 / 3} 1 ,   

p 1 { / 2 / 6 2 / 3} 1 .

π

π

= π + π = = π + π + π = π

= π + π + π = −

( ( ( (

( (
(1-23)

Finally, the s-domain transfer function is given by



The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 9 of 10

a 2 2 3 2
3 3

1 1H (s)
(s 1 )(s 1 )(s 1 ) s 2s 2s 1π π= =

− − π − − + + +( ( (
(1-24)

Example:  The Matlab Signal Processing Toolbox has several powerful functions that are useful

for designing Butterworth (and other types of) filters.  For example, the code

N = 3;
W = 1;
[num,den] = butter(N,W,’s’)

will design the 3rd-order Butterworth filter that is discussed in the previous example.  N is the

filter order. W is the 3dB cut-off frequency, num is a 1×3 vector of numerator coefficients, and

dom is a 1×3 vector of denominator coefficients (the coefficient vectors are ordered highest to

lowest power of s).  To try out “butter”, one can type  [num,den]=butter(3,1,'s') at

the Matlab command prompt to obtain

>> [num,den]=butter(3,1,'s')

Re

Im

× ×

××

×× π/3

Ω
c(π/3

Ω c(
-π/3

Ω c
(2π/3

Ω
c(-2π/3

Ωc(0Ωc(π

Figure 3:  S-plane Butterworth circle of radius Ωc = 1 for a third-order filter.



The Butterworth Low-Pass Filter 10/19/05 John Stensby

Page 10 of 10

num =
         0         0         0    1.0000
den =
    1.0000    2.0000    2.0000    1.0000
>>

Notice that Matlab returns numerator and denominator polynomial coefficients that agree with

the right-hand side of (1-24).


	Butterworth Filter Design Procedure

