
Chapter-5

Analog filter design:

MATLAB has a variety of functions in its signal processing toolbox which support the design and

analysis of analog and digital filters. We shall begin with analog filters and take a look at the

most commonly used approximations, namely,

Butterworth filters

Chebyshev filters

Elliptic filters

These filters are typically specified by their cutoff frequencies and ripples on both the stopband

and passband. The design process starts with the determination of the minimum order of the filter

and the appropriate cutoff frequency to meet the desired specifications. These two parameters

can be estimated via the following commands:

>>[N,Wc]=buttord(Wp,Ws,Rp,Rs,’s’); %Butterworth filter

>>[N,Wc]=cheb1ord(Wp,Ws,Rp,Rs,’s’); %Chebyshev Type-I filter

>>[N,Wc]=cheb2ord(Wp,Ws,Rp,Rs,’s’); %Chebyshev Type-II filter

>>[N,Wc]=ellipord(Wp,Ws,Rp,Rs,’s’); %Elliptic filter

N = lowest order of the filter

Wc = cutoff frequency in rad/s

Rp = passband ripple in dB

Rs = minimum stopband attenuation in dB

Wp, Ws = passband and stopband edge frequencies, respectively.

Practice:

Using MATLAB, determine the order (N) and cutoff frequency (Wc) of a lowpass Butterworth

filter with the following specifications:

Wp =10 rad/s %passband critical frequency

Ws = 20 rad/s %stopband critical frequency

Rp = -2 dB %passband ripple

Rs = -20 dB %stopband attenuation

>>Wp = 10; Ws = 20; Rp = -2; Rs = -20;

>>[N,Wc] = buttord(Wp,Ws, -Rp, -Rs, ‘s’)

N =

 4

Wc =

 129

 11.2610

Normalized lowpass analog filters:

Analog filters are typically designed as normalized (cutoff frequency of 1 rad/s) lowpass filters

and then transformed to the specific frequency and filter type (highpass, bandpass, etc.) with

direct substituion.

The functions buttap, cheb1ap, cheb2ap, ellipap, can be used to design normalized analog

lowpass Butterworth, Chebyshev Type-I, Chebyshev Type-II, and elliptic filters, respectively.

Syntax:

>>[z,p,k]=buttap(n); %normalized Butterworth filter

>>[z,p,k]=cheb1ap(N,Rp); %normalized Chebyshev Type-I filter

>>[z,p,k]=cheb2ap(N,Rs); %normalized Chebyshev Type-II filter

>>[z,p,k]=ellipap(N,Rp,Rs); %normalized elliptic filter

Rp = ripple in the passband (in dB)

Rs = ripple in the stopband (in dB)

N = order of the filter

z =vector containing the zeros

P = vector containing the poles

k = gain factor

Practice:

Using MATLAB, find the poles, zeros, and the gain factor of a normalized 5th-order Butterworth

filter.

>>[z, p, k] = buttap(5)

z =

 []

p =

 -0.3090 + 0.9511i

 -0.3090 - 0.9511i

 -0.8090 + 0.5878i

 -0.8090 - 0.5878i

 -1.0000

k =

 1

 130

Practice:

Using MATLAB, find poles, zeros, and the gain factor of a normalized 4th-order normalized

Chebyshev Type-I filter with Rp = 2 dB.

>>[z,p,k]=cheb1ap(4,2)

z =

 []

p =

 -0.1049 + 0.9580i

 -0.2532 + 0.3968i

 -0.2532 - 0.3968i

 -0.1049 - 0.9580i

k =

 0.1634

It is often the case to specify the designed analog filter in terms of its transfer function. The

function zp2tf converts the zeros, poles, and gain characterization of the filter to a rational

function form (transfer function).

Syntax:

>>[num, den] = zp2tf(z,p,k);

where num contains the numerator coefficients and den the denominator coefficients. Let us

give it a try!

Practice:

Using MATLAB, determine the transfer function of a 4th-order normalized Chebyshev Type-I

lowpass filter with Rp=2 dB.

>>[z,p,k] = cheb1ap(4,2); %poles, zeros, and gain specs of Chebyshev filter

>>[num,den]=zp2tf(z,p,k) %convert to rational function form

>>tf(num,den) %print the transfer function

Transfer function:

 0.1634

--

s^4 + 0.7162 s^3 + 1.256 s^2 + 0.5168 s + 0.2058

 131

Frequency response of analog filters:

Practice:

Design a 4th-order Chebyshev Type-I normalized lowpass filter with 3-dB ripple in the passband.

Sketch its magnitude and phase responses.

>>[z,p,k]=cheb1ap(4,3); %pole, zero, and gain specs of filter

>>[num,den]=zp2tf(z,p,k); %numerator and denominator of H(s)

>>disp(‘num=’); disp(num’) %display numerator coefficients

>>disp(‘den=’);disp(den’) %display denominator coefficients

>>tf(num,den) %print the transfer function H(s)

>>w=0:0.005:3; %frequency vector

>>mag=abs(H); %compute magnitude response

>>phase=angle(H)*180/pi; %compute phase response

>>subplot(2,1,1);plot(w,mag);grid %plot magnitude response

>>%subplot(2,1,2);plot(w,phase);grid %plot phase response

>>xlabel(‘\omega,[rad/s]’) %label the horizontal axis

>>ylabel(‘|H(\omega)|’) %label the vertical axis

>>title(‘Chebyshev Type-I normalized LPF’)

Frequency transformations:

The previous filters are designed for the normalized cutoff frequency (1 rad/s). We shall now

consider a number of transformations that will allow us to alter the cutoff frequency, and obtain

lowpass, highpass, bandpass, and bandstop filters.

The commands lp2lp, lp2hp, lp2bp, and lp2bs, provide lowpass-to-lowpass, lowpass-to-

highpass, lowpass-to-bandpass, and lowpass-to-bandstop transformations, respectively.

Syntax:

>>[num,den]=lp2lp(num,den,Wc); %lowpass-to-lowpass

>>[num,den]=lp2hp(num,den,Wc); %lowpass-to-highpass

>>[num,den]=lp2bp(num,den,W0,Bw); %lowpass-to-bandpass

>>[num,den]=lp2bs(num,den,W0,Bw); %lowpass-to-bandstop

 132

Wc = cutoff frequency of the filter

W0 = center frequency of the filter (bandpass and bandstop)

Bw = bandwidth of the filter (bandpass and bandstop)

Practice:

Design a fourth-order Butterworth lowpass filter with a cutoff frequency of 5 Hz. The procedure

is as follows:

Design a fourth-order normalized Butterworth filter using buttap.

Apply the frequency transformation lp2lp to achieve the desired specifications.

>>[z,p,k]=buttap(4); %fourth-order Butterworth filter

>>[num,den]=zp2tf(z,p,k); %convert to polynomial form

>>tf(num,den) %print the transfer function H(s)

>>wc=2*pi*5; %specify cutoff frequency in rad/s

>>[num,den]= lp2lp(num,den,wc); %desired filter

>>w=0:pi/100:10*pi; %define a frequency vector

>>H=freqs(num,den,w); %compute frequency response

>>mag=abs(H); %compute magnitude response

>>plot(w/2/pi, mag); %plot magnitude response versus frequency (Hz)

>>xlabel(‘frequency, [Hz]’) %label the horizontal axis

>>ylabel(‘|H(f)|’) %label the vertical axis

>>title(‘Fourth-order Butterworth LPF: fc= 5 Hz’)

Practice:

Design a fourth-order Butterworth bandpass filter with a center frequency W0= 24 rad/s and

bandwidth Bw= 10 rad/s.

>>W0= 24; Bw=10; %specify cutoff frequency and bandwidth

>>[z,p,k]=buttap(4); %specify the Butterworth filter

>>[num,den]=zp2tf(z,p,k); %specify filter in polynomial form

>>[num,den]=lp2bp(num,den,W0,Bw); %convert LPF to BPF

>>tf(num,den) %print the transfer function of desired filter

>>w=0:pi/1000;20*pi; %specify frequency vector

>>H=freqs(num,den,w); %compute the frequency response

 133

>>mag=abs(H); %compute the magnitude response

>>plot(w/2/pi, mag); %plot the magnitude response

>>xlabel(‘frequency, [Hz]’) %label horizontal axis

>>ylabel(‘|H(f)|’) %label vertical axis

>>title(‘Fourth-order bandpass Butterworth filter’)

The signal processing toolbox offers more straightforward command for the design of analog

filters.

Butterworth analog filters:

>>[num,den]=butter(N,Wc, ‘s’); %Lowpass Butterworth filter

>>[num,den]=butter(N,Wc,’s’); %Bandpass Butterworth filter (order=2N)

>>[num,den]=butter(N,Wc,’high’,’s’); %Highpass Butterworth filter

>>[num,den]=butter(N,Wc,’stop’,’s’); %Bandstop Butterworth filter

>>[z,p,k]=butter(N,Wc,’s’); %Lowpass Butterworth filter

>>[z,p,k]=butter(N,Wc,’s’); %Bandpass Butterworth filter

>>[z,p,k]=butter(N,Wc,’high’,’s’); %Highpass Butterworth filter

>>[z,p,k]=butter(N,Wc,’stop’,’s’); %Bandstop Butterworth filter

N=order of the filter

Wc=cutoff frequency. For bandstop and bandpass Wc=[Wc1,Wc2]

z= zeros

p= poles

k= gain

Practice:

Design an 8th-order Butterworth bandpass filter with Wc= 2 ,5 . Sketch the magnitude and

phase responses.

>>Wc=[2*pi,5*pi]; %specify critical frequencies

>>[num,den]=butter(w,Wc,’s’); %specify the filter in polynomial form

>>[H,w]=freqs(num,den); %computer the frequency response

 134

>>mag=abs(H); %extract the magnitude response

>>phase=angle(H)*180/pi; %extract the phase response in degrees

>>plot(w,mag);grid %plot magnitude response

Chebyshev analog filters

The following functions can be used for the design of Type-I and Type-II Chebyshev filters:

Type-I:

>>[num,den]=cheby1(N, Rp,Wc,’s’); %LPF: Rp=ripples (dB) in passband

>>[num,den]=cheby1(N,Rp,Wc,’high’,’s’); %HPF

>>[num,den]=cheby1(N,Rp,Wc,’stop’,’s’); %BSF: Wc=[Wc1,Wc2]

>>[num,den]=cheby1(N,Rp,Wc,’s’); %BPF: Wc=[Wc1,Wc2]

>>[z,p,k]=cheby1(N,Rp,Wc,’s’); %LPF

>>[z,p,k]=cheby1(N,Rp,Wc,’high’,’s’); %HPF

>>[z,p,k]=cheby1(N,Rp,Wc,’stop’,’s’); %BSF

>>[z,p,k]=cheby1(N,Rp,Wc,’s’); %BPF

Type-II:

>>[num,den]=cheby2(N,Rs,Wc,’s’); %LPF: Rs=decibels down

>>[num,den]=cheby2(N,Rs,Wc,’high’,’s’); %HPF

>>[num,den]=cheby2(N,Rs,Wc,’stop’,’s’); %BSF: Wc=[Wc1,Wc2]

>>[num,den]=cheby2(N,Rs,Wc,’s’); %BPF: Wc=[Wc1,Wc2]

>>[z,p,k]=cheby2(N,Rs,Wc,’s’); %LPF

>>[z,p,k]=cheby2(N,Rs,Wc,’high’,’s’); %HPF

>>[z,p,k]=cheby2(N,Rs,Wc,’stop’,’s’); %BSF

>>[z,p,k]=cheby2(N,Rs,Wc,’s’); %BPF

Digital filter design:

There are broadly two kinds of digital filters, usually classified according to the duration of their

impulse response, which can be either of finite length or infinite length. Filters having a finite

duration impulse response are called Finite Impulse Response Filters or FIR filters; and filters

with an infinite duration impulse response are called Infinite Impulse Response Filters or IIR

filters.

Note: Normalized Frequency

MATLAB uses a somewhat non-standard form for specifying frequencies for digital filters. The

digital frequency axis which, we usually consider as ranging over the interval 0, 2 is

specified in MATLAB digital filter functions as [0,2], with 1.0 corresponding to half the sampling

rate.

Plots of frequency response obtained with MATLAB use the term “normalized frequency” for a

frequency which is normalized with respect to half the sampling frequency. Just as analog

frequency can be expressed in rad/s as well as Hz, digital frequency can be expressed in

radian/sample as well as in cycles per sample.

 135

1
,a

d a s d

s d

t F
f T

:dT samples/radian

Practice:

If a 8 Hz sinusoidal signal is sampled at 32 Hz, what is its digital frequency?

8
0.25

32
dF cycles/sample 2 0.25 1.571d rad/sample

Infinite Impulse Response Filters

The first step is to determine the minimum order and cutoff frequency of the filter required to

meet the desired specifications. The second step is to pass this order and cutoff frequency to the

design functions butter, cheby1, cheby2, or ellip. The following commands give estimates of

the filter’s order and cutoff frequency:

>>[N,Wc]=buttord(Wp,Ws, Rp,Rs); %Butterworth filter

>>[N,Wc]=cheb1ord(Wp,Ws,Rp,Rs); %Chebyshev Type-I

>>[N,Wc]=cheb2ord(Wp,Ws,Rp,Rs); %Chebyshev Type-II

>>[N,Wc]=ellipord(Wp,Ws,Rp,Rs); %Elliptic

N= lowest order of the digital IIR filter

Wc=cutoff frequency

Rp=passband ripple in dB

Rs=minimum stopband attenuation in dB

Wp,Ws=passband and stopband edges frequencies, such that 0<Wp,Ws<1 where 1 corresponds to

pi radians.

Practice:

Find the order and cutoff frequency of a Butterworth digital lowpass filter with no more than 1

dB attenuation below 3400 Hz and at least 40 dB attenuation at and beyond 3600 Hz. The

sampling frequency is 8000 Hz.

>>Fs=8000; %specify sampling rate

>>Fn=Fs/2; %specify Nyquist frequency

>>wp=3400/Fn; %normalized passband frequency

>>ws=3600/Fn; %normalized stopband frequency

>>Rp=1; Rs=40; %passband and stopband attenuation

>>[N,wc]=buttord(wp,ws,Rp,Rs)

We shall now consider two techniques for designing IIR filters, namely,

Bilinear transformation method

Impulse invariance method

Bilinear transformation method:

 136

In this section we start with the design of IIR filters based on the Bilinear Transformation Method

(BTM). The bilinear transformation method is a standard procedure of mapping the s-plane into

the z-plane. It transforms an analog filter, designed via conventional techniques, into a discrete

equivalent. The process begins with the design of a normalized lowpass analog filter. The

command buttap, cheb1ap, cheb2ap, and ellipap provide Butterworth, Chebyshev Type1,

Chebyshev Type II, and elliptic analog filters, respectively. Then, frequency transformations are

applied to the normalized filter to yield lowpass, bandpass, highpass or bandstop filter with the

desired design frequency requirements. The resulting transfer function is mapped into a digital

filter transfer function via the bilinear command.

Syntax:

>>[numz,denz]=bilinear(nums,dens,Fs); %Fs=sampling frequency

>>[numz,denz]=bilinear(nums,dens,Fs,Fp); %Fp=specifies prewarping in Hz

numz, denz: numerator and denominator of the transfer function H(z)

nums,dens: numerator and denominator of the transfer function H(s)

Practice:

Design a 4-th order Butterworth lowpass digital filter with a cutoff frequency of 3 rad/s and

sampling rate of 10 Hz.

>>[z,p,k]=buttap(4); %normalized 4-th order Butterworth filter

>>[num,den]=zp2tf(z,p,k); %polynomial specification of the filter

>>wc=3; %specify the cutoff frequency

>>[num,den]=lp2lp(num,den,wc); %scale the normalized filter by wc

>>Fs=10; %sampling frequency

>>[numd,dend]=bilinear(num,den,Fs); %analog to digital mapping

>>disp(‘numd=’), disp(numd’) %print numerator coefficients in column vector

>>disp(‘dend=’), disp(dend’) %print denominator coefficients in column vector

>>[Hd,wd]=freqz(numd,dend); %determine the frequency response

>>magd=abs(Hd); %compute magnitude response of digital filter

>>subplot(2,1,1);plot(wd/pi,mag);grid; %plot the magnitude response

>>title(‘Lowpass Butterworth digital filter’);

>>ylabel(‘Amplitude response’)

>>axis([0 0.2 0 1])

>>subplot(2,1,2);plot(wd/pi,angle(Hd));grid

>>axis([0 0.2 –200 200])

>>ylabel(‘Phase response’)

>>xlabel(‘Frequency, [in units of pi]’)

The signal processing toolbox includes butter, cheby1, cheby2, and ellip functions that automate

the design of IIR filters via the bilinear transformation method.

[num,den]=butter(n,wn); %LPF: 0<wn<1

[num,den]=butter(n,wn,’high’); %HPF: 0<wn<1

[num,den]=butter(n,wn); %BPF: wn=[w1,w2], 0<w1,w2<1

[num,den]=butter(n,wn,’stop’); %BSF: wn=[w1,w2],0<w1,w2<1

[num,den]=cheby1(n,Rp,wn); %LPF: 0<wn<1

 137

[num,den]=cheby2(n,Rs,wn); %LPF: 0<wn<1

[num,den]=cheby1(n,Rp,wn,’high’); %HPF: 0<wn<1

[num,den]=cheby2(n,Rs,wn,’high’); %HPF: 0<wn<1

[num,den]=cheby1(n,Rp,wn,’stop’); %BSF: wn=[w1,w2], 0<w1,w2<1

[num,den]=cheby2(n,Rs,wn,’stop’); %BSF: wn=[w1,w2], 0<w1,w2<1

[num,den]=cheby1(n,Rp,wn); %BPF: wn=[w1,w2], 0<w1,w2<1

[num,den]=cheby2(n,Rs,wn); %BPF: wn=[w1,w2], 0<w1,w2<1

[num,den]=ellip(n,Rp,Rs,wn); %LPF: 0<wn<1

[num,den]=ellip(n,Rp,Rs,wn,’high’); %HPF: 0<wn<1

[num,den]=ellip(n,Rp,Rs,wn,’stop’); %BSF: wn=[w1,w2], 0<w1,w2<1

[num,den]=ellip(n,Rp,Rs,wn); %BPF: wn=[w1,w2], 0<w1,w2<1

Rp: Passband ripple in dB

Rs: Minimum stopband attenuation in dB

num: Numerator of transfer function

den: denominator of transfer function

The following functions can also be used to determine the poles, zeros and the gain of the transfer

function.

>>[z.p,k]=butter(n,wn);

>>[z,p,k]=cheby1(n,Rp,wn);

>>[z,p,k]=cheby2(n,Rs,wn);

>>[z,p,k]=ellip(n,Rp,Rs,wn);

z: vector of zeros

p: vector of poles

k: gain of transfer function

Practice:

Design a 4-th order lowpass Butterworth filter having a cutoff frequency of 3 rad/s and Fs=10 Hz.

>>N=4; %specify order of the filter

>>Fs=10; %specify the sampling rate

>>wc=3; %specify the analog cutoff frequency

>>omegad=wc/(pi*Fs); %normalized digital cutoff frequency

>>[numd,dend]=butter(N,omegad); %specify the digital filter transfer function

>>[Hd,wd]=freqz(numd,dend); %provide the frequency response of digital filter

>>magd=abs(Hd); %compute the magnitude response

>>phase=angle(Hd)*180/pi; %compute the phase response

>>subplot(2,1,1);plot(wd/pi,magd);grid; %plot magnitude response

>>subplot(2,1,2);plot(wd/pi,phase);grid; %plot the phase response

Practice:

Design an 8-th order elliptic lowpass filter with a cutoff frequency of 250 Hz, 0.5 dB of ripple in

the passband and a minimum stopband attenuation of 60 dB to be used with a signal that is

sampled at 4 kHz.

>>clear all;

 138

>>Fs=4000;

>>Rp=0.5; Rs=60;

>>Fc=250;

>>[numd,dend]=ellip(8,Rp,Rs, 2*Fc/Fs);

>>f=4*(0:500);

>>[H,f]=freqz(numd,dend,512,4000);

>>mag=20*log10(abs(H));

>>plot(f,mag,’LineWidth’,2); grid

>>axis([0 2000 –90 10])

>>xlabel(‘Frequency, (Hz)’)

>>ylabel(‘Magnitude response, (dB)’)

>>title(‘Frequency response of the elliptic filter’)

Practice:

A sequence has 1 kHz sampling. Design an 8-th order Chebyshev Type I bandpass filter that has

a bandwidth of 40 Hz centered at 200 Hz, with 0.2 dB of ripple in the passband. Plot the

magnitude response between 100 Hz and 300 Hz, and the pole-zero diagram.

Fs=1000;

[b,a]=cheby1(4,0.2,[180/500,220/500])

[H,F]=freqz(b,a,512,Fs);

subplot(2,1,1); plot(F,abs(H),’LineWidth’,2); grid

title(‘Frequency response of Bandpass filter’)

ylabel(‘Magnitude response’)

xlabel(‘Frequency’)

subplot(2,1,2);zplane(b,a)

 139

Practice:

Design a 4-th order IIR Chebyshev type I bandpass filter with cutoff frequencies at 300 Hz and

3400 Hz, 0.5 dB of ripple in the passband to be used with a signal that is sampled at 8kHz.

>>Fs=8000;

>>Fn=Fs/2;

>>w1=300/4000;

>>w2=3400/4000;

>>wc=[w1 w2];

>>order=4

>>ripple=0.5;

>>[b a]=cheby1(order, ripple,wc];

>>w=0:pi/99:99;

>>H=freqz(b,a,w);

>>mag=20*log10(abs(H));

>>phase=angle(H);

>>tol=0.95*pi;

>>phase=unwrap(phase,tol);

>>title(‘Magnitude plot for IIR filter’)

>>xlabel(‘Frequency (radians)’)

>>ylabel(‘Magnitude (dB)’)

Practice:

Plot a family of three Butterworth lowpass filters:

 140

>>[b1,a1]=butter(2,0.1);

>>[H1,f,s]=freqz(b1,a1,256,8192);

>>[b2,a2]=butter(5,0.1);

>>H2=freqz(b2,a2,256,8192);

>>[b3,a3]=butter(10,0.1);

>>H3=freqz(b3,a3,256,8192);

>>H=[H1 H2 H3];

>>s.plot=’mag’;

>>freqzplot(H,f,s)

MATLAB filter:

Syntax:

>>y=filter(b,a,x);

filters the data in vector x (input) with the filter described by coefficients vectors a (den) and b

(num) to create the filtered data vector y (output). The command filter works for both real and

complex inputs. If a(1) 0, filter normalizes the filter coefficients by a(1).

Practice:

An LTI filter is described by a difference equation

0.268 2 0.634 0.634 2y n y n x n x n

 141

Determine the impulse response and sketch it.

>>a=[1 0 -0.268]; %vector corresponding to the coefficients of y’s

>>b=[0.634 0 0.634]; %vector corresponding to the coefficients of x’s

>>imp=[1 zeros(1,31)]; %impulse input

>>y=filter(b,a,imp); %impulse response

>>stem(y) %plot impulse response

MATLAB impz:

Syntax:

>>[h,t]=impz(b,a)

>>[h,t]=impz(b,a,n,Fs) %compute n samples of the impulse response

>>[h,t]=impz(b,a,[],Fs) %Fs: sampling rate

Computes the impulse response of the filter with numerator coefficients b and denominator

coefficients a. The function impz chooses the number of samples and returns the response in

column vector h and times in column vector t

Practice:

This script file takes a series of 3 pulses and passes them through a Butterworth filter, and then

plots the results.

close all; clear all; clc;

t=(1:350); %time base

o=ones(1,50); %an array of 1’s

z=zeros(1,50); %an array of 0’s

x=[z o z o z o z]; %signal with three pulses

cutoff=0.05; %cutoff frequency of filter

[num,den]=butter(1,cutoff); %Butterworth filter

y=filter(num,den,x); %filtered output

plot(t,x,,t,y,’ro’,’LineWidth’,2); grid

axis([0 350 0 1.2])

xlabel(‘Time’)

ylabel(‘Amplitude’)

title(‘Low-pass filtered squarewave’)

 142

Practice:

An analog filter is described by its transfer function given by

0.5 4

1 2
a

s
H s

s s

Assume the sampling frequency of 10 Hz and a matching frequency of 1 Hz.

Use the bilinear transformation method to find a digital filter equivalent.

>>num=0.5*[1 4];

>>den=conv([1 1],[1 2]);

>>[numd,dend]=bilinear(num,den,10,1);

>>[Ha,wa]=freqs(num,den);

>>[Hd,Fd]=freqz(numd,dend,256,’whole’,10);

>>plot(wa/(2*pi),20*log10(abs(Ha/Ha(1))),’b’,’LineWidth’,3);

>>hold on

>>plot(Fd,20*log10(abs(Hd/Hd(1))),’k’,’LineWidth’.3)

>>hold off

>>xlabel(‘Frequency, (Hz)’)

>>ylabel(‘Magnitude response, (dB)’)

>>title(‘Frequency response: Anaolg vs digital (bilinear)’)

>>legend(‘Analog’, ‘Digital: bilinear’)

 143

Impulse Invariance method:

Syntax:

>>[numd, dend]=impinvar(num,den, Fs)

Practice:

An analog filter is specified by its transfer function given by

0.5 4

1 2
a

s
H s

s s

Use the impulse invariance method to design its digital counterpart. Compare the analog filter to

two versions of the digital filter; one with a sampling frequency of 20 Hz the other with a

sampling frequency of 50 Hz.

>>Fs1=20; Fs2=50;

>>num=0.5*[1 4];

>>den=conv([1 1],[1 2]);

>>[numd,dend]=impinvar(num,den,Fs1)

>>[numdd,dendd]=impinvar(num,den,Fs2);

>>[H,w]=freqs(num,den);

>>[Hd1,Fd1]=freqz(numd,dend,256,’whole’,20);

>>[Hd2,Fd2]=freqz(numdd,dendd,256,’whole’,50);

>>plot(w/(2*pi),20*log10(abs(H)),’LineWidth’,3);grid

>>hold on

>>plot(Fd1,20*log10(abs(Hd1/Hd1(1))),’g’,’LineWidth’,3);

>>plot(Fd2,20*log10(abs(Hd2/Hd2(1))),’k’,’LineWidth’,3);

>>Hold off

>>legend(‘Analog’,’Digital: Fs=20 Hz’,’Digital: Fs=50 Hz’)

>>xlabel(‘Frequency,(Hz)’)

>>ylabel(‘Magnitude response, (dB)’)

>>title(‘Frequency response: Analog vs digital (impulse invariance)’)

 144

Practice:

A sequence has 1 kHz sampling frequency. Design a 6th order Chebyshev bandpass filter that has

a bandwidth of 40 Hz centered at 200 Hz, with 0.2 dB ripple in the passband.

1. Deduce the difference equation describing the filter

2. Find the attenuation at 100 Hz, 180 Hz, 220 Hz, and 400 Hz

>>Fs=1e3;

>>Fn=Fs/2;

>>fc=[180 220]/Fn;

>>[b,a]=cheby1(3, 0.2,fc)

b =

 0.0019 0 -0.0056 0 0.0056 0 -0.0019

a =

 1.0000 -1.7288 3.5525 -3.1726 3.1034 -1.3156 0.6646

0.0019 0.0056 2 0.0056 4 0.0019 6

1.7288 1 3.5525 2 3.1726 3 3.1034 4

1.3156 5 0.6646 6

y n x n x n x n x n

y n y n y n y n

y n y n

>>HdB=20*log10(abs(freqz(b,a,[100 180 220 400],Fs)))

HdB =

 -48.1943 -0.2000 -0.2000 -69.4665

The Yule Walker Design Method:

 145

The Yule walker method is a direct procedure for designing IIR digital filters. The desired

response is specified numerically in the frequency domain, therefore we are not constrained to the

standard types like lowpass, bandpass, etc.

Syntax:

>>[numd,dend]=yulewalk(N,f,m)

returns row vectors numd, and dend containing the (N+1) coefficients of the order N IIR filter

whose frequency-magnitude characteristics approximately match those given in vectors f and m.,

where f is a vector of frequency points, ranging from 0 to 1, where 1 corresponds to the Nyquist

frequency. The first point of f must be zero and the last point 1, with all intermediate points in

increasing order. Duplicate frequency points are allowed, corresponding to steps in the frequency

response. The vector m contains the desired magnitude response at the frequencies specified by f.

The vectors m and f must be of the same length.

Practice:

Design an IIR filter having the following specifications with a sampling rate of Fs=500 Hz

From To (Hz) Magnitude

0 100 1

100 150 decrease linearly from 1 to 0.5

150 200 0.5

200 225 increase linearly from 0.5 to 1

225 250 1

>>clear all; clc;

>>f=[0 100 150 200 225 250];

>>m=[1 1 0.5 0.5 1 1];

>>plot(f,m,’r’,’LineWidth’,2); grid

>>hold on

>>fs=500;

>>f=f/(fs/2);

>>n=6;

>>[num,den]=yulewalk(n,f,m);

>>[H,w]=freqz(num,den);

>>plot(w/pi*fs/2,abs(H),’LineWidth’,2);

>>hold off

>>title(‘Yule walker approximate IIR filter’);

>>ylabel(‘|H(f)|’);

>>xlabel(‘Frequency,(Hz)’)

>>legend(‘Desired frequency response’,’Yule walker approx.’)

 146

Effect of Coefficient Quantization in IIR Filters:

In the design of digital filters, the coefficients of the designed filters are typically quantized. This

can cause the filter coefficient to be slightly inaccurate, thus yielding some deviations from the

wanted frequency response, and even instability.

Practice:

>>[b,a]=ellip(4,2,40,[0.2 0.4]);

>>n=8; %number of bits

>>bk=round(b/max(b)*2^n)/2^n*max(b);

>>ak=round(a/max(a)*2^n)/2^n*max(a);

>>[H,f]=freqz(b,a,512,8000);

>>[Hq,fq]=freqz(bk,ak,512,8000);

>>subplot(2,2,1); plot(f,20*log10(abs(H)));

>>subplot(2,2,3);plot(fq,20*log10(abs(Hk)));

>>subplot(2,2,2);zplane(b,a)

>>subplot(2,2,4); zplane(bk,ak)

 147

Cacade implementation of IIR filters:

IIR filters are typically implemented by cascading low order sections, such as second-order

sections (biquads). The overall transfer function is simply the product of the individual transfer

functions.

Cascade implementations have better quantization properties than their finite-precision canonic

equivalents. MATLAB function zp2sos converts pole-zero-gain representation of a given system

to an equivalent second-order section representation. Similarly, the function tf2sos converts a

digital filter transfer function parameters to second-order sections form.

Syntax:

>>[sos,g]=zp2sos(z,p,k)

>>[sos,g]=zp2sos(z,p,k,’order’)

>>[sos,g]=zp2sos(z,p,k,’order’,’scale’)

Returns a matrix sos in second-order section form with gain g equivalent to the zero-pole-gain

system represented by input arguments z,p, and k.

>>[sos, g]=tf2sos(num,den)

Returns a matrix sos in second-order section form with gain g equivalent to the system specified

by input arguments num and den.

1 2

1 2

....

....

n

m

z z z z z z
H z k

z p z p z p

 148

Where n and m are the length of z and p, respectively, and k is a scalar gain. The poles and zeros

must be real or complex conjugates. The matrix sos is of size L-by-6.

01 11 21 11 21

02 12 22 12 22

0 1 2 1 2

1

1

...

...

1L L L L L

b b b a a

b b b a a

sos

b b b a a

whose rows contain the numerator and denominator coefficients b and of the second order

sections of H(z).

1k 1ka

1 2

0 1 2

1 2
1 1 21

L
k k k

k k k

b b z b z
H z g

a z a z

Practice:

Design a Butterworth digital lowpass filter with no more than 1 dB attenuation below 800 Hz and

at least 56 dB attenuation at and beyond 3200 Hz. The sampling frequency is 10000 Hz. Find the

coefficients of second-order sections.

>>[N,Wn]=buttord(wp,ws,Rp,Rs);

>>[B,A]=butter(N,Wn);

>>[z,p,k]=td2zp(B,A);

>>sos=zp2sos(z,p,k)

sos =

 0.0043 0.0087 0.0043 1.0000 -1.0729 0.3083

 1.0000 2.0000 1.0000 1.0000 -1.3455 0.6407

Filter Realization Wizard:

MATLAB has a built-in filter realization wizard that automatically generates filter realizations

with specific architecture. The Wizard’s interface allows you to select from the following

realizations:

Direct form I & II

Symmetric FIR

Lattice (MA)

Lattice (AR)

Lattice (ARMA)

To launch the filter realization wizard, simply type dspfwiz in the command window:

 149

>>dspfwiz <enter>

Practice:

Direct Form II Realization:

Design a fourth-order, quarter-band, lowpass Butterworth filter

>>[b,a]=butter(4,0.25)

b =

 0.0102 0.0408 0.0613 0.0408 0.0102

a =

 1.0000 -1.9684 1.7359 -0.7245 0.1204

You configure the wizard to use the coefficients b and a of the designed filter of a Direct-FORM

II structure:

Select Direct-FORM II from the Type menu

Type b in the numerator text field

Type a in the denominator text field

The graphical user interface with these settings is depicted below:

 150

Press the Build button to create the specified filter subsystem in a new model window. Finally,

you double-click the created block to see the Direct-Form II filter realization that the Wizard

created. The Direct-Form II filter realization is depicted below:

 151

Finite Impulse Response (FIR) Filters:

We wrap up the design of digital filters with FIR filters. In this section we consider the

techniques based on the window method and the Parks and McClellan algorithm (minimax).

Window functions:

Windows are used to manipulate data (original signal) in such a way, that the desired information

can be extracted from the spectrum. There are many types of windows proposed for use in

spectral analysis and filter design. MATLAB has several built-in window functions, namely,

Bartlett, Blackman, Boxcar (uniform), Chebwin, Hann, Kaiser, Hamming, and Triang.

Window functions MATLAB keywords

Uniform boxcar

Hanning hann

Hamming hamming

Kaiser kaiser

Chebyshev chebwin

Blackman blackman

Bartlett bartlett

Triangular triang

Practice:

The Hamming window is defined by

2
0.54 0.46cos , 0 1

1

0, elsewhere

ham

n
n N

w n N

1. Write a piece of code to plot it

2. Repeat part (1) using the MATLAB built-in function

N=40;

for n=0:N

 ham(n+1)=0.54-0.46*cos((2*pi*n)/N);

 index(n+1)=n;

end

subplot(2,1,1); stem(index,ham,’filled’)

subplot(2,1,2);stem(index,hamming(41),’filled’)

 152

Kaiser window and its spectrum:

N=1024;

M=20;

beta=3;

b=kaiser(M+1,beta);

subplot(2,1,1);stem(0:M,b,'m','filled');grid

h=get(gcf,'CurrentAxes');

set(h,'FontName','times')

ylabel('\fontname{times}\itw_{\rmkaiser}\rm[\itn\rm]');

title('\fontname{times}\itKaiser window-M\rm=20, \beta=3');

xlabel('\fontname{times} \itn')

[H,w]=freqz(b,1,N);

subplot(2,1,2);plot(w/pi,20*log10(abs(H)/abs(H(1))),'b','LineWidth',2);grid

h=get(gcf,'CurrentAxes');

set(h,'FontName','times')

ylabel('\fontname{times}20 log_{10} |\itW_{\rmkaiser}\rm(\ite^{j\omega}\rm)|')

xlabel('\fontname{times}\omega (\times \pi) rad \cdot sample^{-1}')

 153

Window-based FIR filters:

The function fir1 implements the classical method of windowed linear-phase FIR digital filter

design. It designs filters in standard lowpass, bandpass, highpass, and bandstop configurations.

This function uses the hamming window by default.

Syntax:

>>h=fir1(N,wn); %lowpass or bandpass filter

>>h=fir1(N,wn,window); %lowpass or bandpass with a custom window

Generates an N-th order lowpass FIR filter with normalized cutoff frequency wn, which is

defined as wn=fc/(folding frequency)=fc/(fs/2), using the specified window and returns the filter

coefficients h in length N+1 vector. The output coefficients, h, are ordered in ascending powers

of .
1z

11 2 1 NH z h h z h N z

If no window is specified, the default is the hamming window. The cutoff frequency must be

between 0 and 1, with 1 corresponding to the Nyquist frequency. If wn is a two-element vector,

wn=[w1,w2], fir1 returns a bandpass filter with passband w1<w<w2.

>>h=fir1(N,wn,’high’); %highpass FIR filter

>>h=fir1(N,wn,’high’,window); %highpass with a custom window

>>h=fir1(N,wn,’stop’); %bandstop FIR filter, wn=[w1,w2]

 154

>>h=fir1(N,wn,’stop’,window); %bandstop with a custom window

Note: The function fir1 always uses an even filter order for the highpass and bandstop

configurations. This is because for odd orders, the frequency response at the Nyquist frequency

is zero, which is inappropriate for highpass and bandstop filters.

Practice:

Design a 50-th order lowpass FIR filter with normalized frequency of 0.4.

>>N=50; %specify order of filter

>>wn=0.4; %specify normalized frequency

>>coef=fir1(N,wn); %provide filter coefficients

>>disp(‘coef: ‘), disp(coef) %print the coefficients

>>[H,w]=freqz(coef,1,512); %determine the frequency response

>>plot(w/pi, abs(H),’.’); grid %plot magnitude response

>>title(‘FIR filter, order=50,wn=0.4*pi’);

>>xlabel(‘Frequency, [rad/sample’]’)

>>ylabel(‘Magnitude response’)

Practice:

Design a 37-th order lowpass FIR filter with a normalized frequency of 0.6. Use the uniform

window.

>>N=37; %specify order of filter

>>wn=0.6; %specify the cutoff frequency in units of pi

>>hu=fir1(N,wn,boxcar(N+1)); %windowed FIR coefficients (uniform window)

>>hb=fir1(N,wn,Blackman(N+1)); %windowed FIR coefficients (Blackman window)

>>hk=fir1(N,wn,kaiser(N+1,5.653)); %windowed FIR coefficients (Kaiser window)

>>[H,w]=freqz(hu,1); %compute frequency response of filter

>>mag_dB=20*log10(abs(H)); %compute magnitude in dB

>>plot(w/pi,mag_dB);grid; %plot the magnitude response

>>title(’37-th order FIR filter with uniform window’)

Practice:

Design a FIR bandpass filter of order 63 with bandwith extending from 300 Hz to 3400 Hz. Use

a sampling rate of 8000 Hz.

>>order=63; %order

>>Fs=8000; %sampling rate

>>Fn=Fs/2; %folding frequency

>>wl=300/Fn; %normalized lower frequency

>>wu=3400/Fn; %normalized upper frequency

>>wc=[wl,wu]; %cutoff frequency vector

>>b=fir1(order,wc]; %coefficients of FIR filter

>>[H,f]=freqz(b,1,512,Fs); %frequency response

>>plot(f,abs(H),’LineWidth’,3);grid %plot magnitude response

>>title(‘FIR bandpass filter’) %add title

>>xlabel(‘Frequency (Hz)’) %label horizontal axis

 155

>>ylabel(‘Magnitude response’) %label the vertical axis

Practice:

Design a 64-th order lowpass FIR filter for a sampling frequency of 8kHz and cutoff frequency of

1kHz. Use a Hanning window.

>>N=64; %filter order

>>Fs=8e3; %sampling frequency

>>Fc=1e3; %cutoff frequency

>>Fn=Fs/2; %Nyquist frequency

>>fc=Fc/Fn; %normalized cutoff frequency

>>b=fir1(N,fc,hanning(N+1)); %filter coefficients

>>[H,w]=freqz(b,1,512]; %frequency response

>>plot(w*Fn/pi,abs(H));grid %plot magnitude response

>>title(‘FIR filter: window method’) %add title

>>xlabel(‘Frequency (Hz)’) %label horizontal axis

>>ylabel(‘Magnitude’) %label vertical axis

Practice:

Design a 20-th order band-stop filter for a sampling frequency of 16 kHz, lower cutoff frequency

of 1.2 kHz and upper cutoff frequency of 2.1 kHz.

 156

>>N=20; %filter order

>>Fs=16e3; %sampling frequency

>>Fn=Fs/2; %Nyquist frequency

>>fc=[1200, 2100]/Fn; %normalized cutoff frequencies

>>b=fir1(N,fc,’stop’); %filter coefficients

>>[H,w]=freqz(b,1,512); %frequency response

>>plot(w%Fn/pi,abs(H));grid %plot magnitude response

>>xlabel(‘Frequency (Hz)’) %label horizontal axis

>>ylabel(‘Magnitude’) %label the vertical axis

>>title(‘FIR filter: window method’) %add title

Practice:

Design a 100-th lowpass FIR filter, with sampling frequency 800 Hz and cutoff frequency 65 Hz.

>>Fs=800; %sampling frequency

>>Fn=Fs/2; %Nyquist frequency

>>wc=65/Fn; %normalized cutoff frequency

>>N=100; %order

>>b=fir1(N,wc); %filter coefficients

Windowed method with an arbitrary shape:

The function fir2 designs a linear phase FIR filter using the window method with arbitrary

shaped magnitude responses.

Syntax:

>>h=fir2(N,f,m); %FIR filter with Hamming window

>>h=fir2(N,f,m,window); %FIR filter with custom window

designs an N-th order FIR digital filter with the frequency response specified by vectors f and m

and returns the vector h of length (N+1) corresponding to the filter coefficients, arranged in

ascending powers of . Vectors f and m specify the frequency points and magnitude values at
1z

 157

the specified frequency points. The frequency points are arranged in an increasing order, in the

range 0 to 1, with the first frequency being 0 and the last frequency point being 1 (Nyquist

frequency). By default, fir2 uses a Hamming window. The vector window must be (N+1)

elements long. Duplicate frequency points are allowed, corresponding to steps in the frequency

response.

Practice:

Design a 30-th order lowpass filter and overplot the desired frequency response with the actual

frequency response.

>Fs=1000;

400 500]/Fn;

);

,256);

pi, abs(H),’LineWidth’,3);grid

0 400 500
f

1

Ideal response

>

>>Fn=Fs/2;

>>f=[0 400

>>m=[1 1 0 0];

>>h=fir2(30,f,m

>>[H,w]=freqz(h,1

>>plot(f*Fn, m, ‘o’,Fn*w/

>>legend(‘Ideal’, ‘Designed’)

>>xlabel(‘Frequency (Hz)’)

>>ylabel(‘Magnitude’)

>>title(‘FIR filter’)

arks & MacClellan Algorithm:

P

 158

The most widely accepted method for designing FIR filters is based on an algorithm devised by

Parks and McClellan based on the Remez exchange algorithm. This method is carried out in

MATLAB using the remez command. This method is considered optimal, because it produces a

design that gives the smallest error between the actual and desired responses. Filters designed

this way exhibit an equiripple behavior.

A FIR filter designed via this procedure is specified via the order of the filter and the location of

its passbands and stopbands. The bands are specified in terms of the Nyquist frequency. The

bands must be linear, but not restricted to having zero slopes. To specify the bands two variables,

frequency and magnitude are given. Frequency represents a vector of frequencies specifying the

start and endpoints for each band, and must always start with 0 (DC) and end with 1 (Nyquist

frequency). Magnitude specifies the corresponding magnitude at the edges of the bands. Here is

an illustration of the procedure.

Practice:

Design an optimal 32-coefficient FIR bandpass filter that aims to achieve unity gain between 600

Hz and 900 Hz, and zero gain below 400 Hz and above 1100 Hz. Assume a 5 kHz sampling

frequency.

400 600 900 1100 2500
f

0

1

G(f)

To implement this algorithm, we need to specify two vectors, one containing six frequencies each

normalized to Nyquist frequency, the other containing the desired amplitude response at the six

specified frequencies. Lastly, we apply the remez command to derive the filter coefficients. The

order of the filter is taken to be the number of coefficients less one.

>>freq=[0 400/2500 600/2500 900/2500 1100/2500 2500/2500]; %frequency vector

>>gain=[0 0 1 1 0 0]; %amplitude vector

>>order=31; %order of filter

>>coef=remez(order,freq,gain); %coefficients

>>freqz(coef, 1, 400,5000); %plot responses

 159

Practice:

Design a bandpass filter using Remez.

>Fs=8000;

n;

3 F4 1];

z(N-1,F,m);

s);

 grid

1000 1200 2000 2200 4000
f

1

0

Desired response

>

>>Fn=Fs/2;

>>F1=1000/F

>>F2=1200/Fn;

>>F3=2000/Fn;

>>F4=2200/Fn;

>>F=[0 F1 F2 F

>>m=[0 0 1 1 0 0];

>>N=43;

>>b=reme

>>[H,f]=freqz(b,1,512,F

>>plot(f,20*log10(abs(H)));

 160

 161

