Filter Approximation Theory

Butterworth, Chebyshev, and Elliptic
Filters



Approximation Polynomials

« Every physically realizable circuit has a transfer function
that 1s a rational polynomial in s

 We want to determine classes of rational polynomials that

approximate the “Ideal” low-pass filter response (high-pass
band-pass and band-stop filters can be derived from a low pass design)

* Four well known approximations are discussed here:

— Butterworth: Steven Butterworth,"On the Theory of Filter Amplifiers",

Wireless Engineer (also called Experimental Wireless and the Radio
Engineer), vol. 7, 1930, pp. 536-541

— Chebyshev: Pafnuty Lvovich Chebyshev (1821-1894) - Russia

Cyrillic alphabet - Spelled many ways L‘IE6 bl LUéB

— Elliptic Function: Wilhelm Cauer (1900-1945) - Germany
U.S. patents 1,958,742 (1934), 1,989,545 (1935), 2,048,426 (1936)

— Bessel: Friedrich Wilhelm Bessel, 1784 - 1846
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Definitions

 Let |H(m)|? be the approximation to the ideal

low-pass filter response [I(®)|?
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Where m, 1s the 1deal filter cutoff frequency
(1t 1s normalized to one for convenience)
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Definitions - 2

. |H((0) 2 can be Written as

(@) = 1+&*F*(w)
Where F() 1s the “Characteristic Function” which
attempts to approximate:

F(w) 1 20

I o
— This cannot be done with a finite order polynomial
— ¢ provides flexibility for the degree of error in the
passband or stopband.
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Filter Specification

* |H(w)]? must stay within the shaded region
H(w)? 1

' W/
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| band

i '\: Transition Region
« Note that this 1s an incomplete specification. The phase
response and transient response are also important and

need to be appropriate for the filter application
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Butterworth

* F(w)=mw"and € =1 and

H(w)P,

-
* Characteristics
— Smooth transfer function (no ripple)

— Maximally flat and Linear phase (in the pass-band)
— Slow cutoff ®
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Butterworth Continued

1
* Pole locations in the s-plane at: ‘H ((0)‘2 = >
(Dzn:_l Orw:(_l)(l/zn) 1+(()
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— Poles are equally spaced on the unit circle at 0=km/2n.
— H(s) only uses the n poles 1n the left half plane for stability.
— There are no zeros
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Response (dh)

Butterworth Filter
IH(s)| for n=4

H(s) = 1/( s*+2.6131s3+ 3.4142s2+ 2.6131s + 1)
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Chebyshev — Type 1
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— Controlled equiripple in the pass-band
— Sharper cutoff than Butterworth
— Non-linear phase (Group delay distortion) @

* Chebyshev type 2 moves the ripple into the stop-band
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Chebyshev
H(s)| for n=4, r=1 (Type 1)

Poles lie on an ellipse

Response (db)

1.3

H(s) = 0.2457/( s*+ 0.9528s3 + 1.4539s2 + 0.7426s + 0.2756)
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Elliptic Function
* F(w)=U_(m) — the Jacobian elliptic function

H(w)]? 1
3-8y

3z
© 1
 S-Plane

— Poles approximately on an ellipse

— Zeros on the jw-axis

e Characteristics
— Separately controlled equiripple in the pass-band and stop-band
— Sharper cutoff than Chebyshev (optimal transition band)
— Non-linear phase (Group delay distortion) @
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Elliptic Function

=3, r;=50
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(0.00325%+ 0.059552 + 0.1554)/( s*+ 0.5769s3 + 1.222752 + 0.4369s + 0.2195)

H(s)
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Bessel Filter

Butterworth and Chebyshev filters with sharp
cutoffs (high order) carry a penalty that 1s
evident from the positions of their poles in
the s plane. Bringing the poles closer to the
jo axis increases their Q, which degrades the
filter's transient response. Overshoot or
ringing at the response edges can result.

The Bessel filter represents a trade-off in the
opposite direction from the Butterworth. The
Bessel's poles lie on a locus further from the
jm axis. Transient response 1s improved, but
at the expense of a less steep cutoff in the
stop-band.
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Practical Filter Design

* Use a tool to establish a prototype design
— MatLab is a great choice

— See http://doctord.webhop.net/courses/Topics/Matlab/index.htm
for a Matlab tutorial by Dr. Bouzid Aliane; Chapter 5 1s on filter design.

* Check your design for ringing/overshoot.

— If detrimental, increase the filter order and redesign to exceed
the frequency response specifications

— Move poles near the jw-axis to the left to reduce their Q
— Check the resulting filter against your specifications

« Moving poles to the left will reduce ringing/overshoot,
but degrade the transition region.
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