EE 102 Homework #6 Solutions

Fall 2001 Professor Paganini

1. (a) We found in HW #5 that wy = § and the Fourier coeflicients
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The sine-cosine Fourier series representation of f(t) is
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Hence the sine-cosine Fourier series representation of f(t) is

f(t) = cos (g) + i % sin (n(%)t)
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(b) By Parseval’s theorem,
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Then the DC term is
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We can get a tighter bound by noting that for 7 = 37, and n # 0

Y, = {0 n even

i‘;—‘;r n odd
Hence
1 V2
P = 2 0
A0 () Z 14 3672n2 n2x?
n odd,n>0
1 V2
< - 0
— Z 367r2n2 n27r2
n odd,n>0
o ¥ et
1874 nt 1728°
n odd,n>0

using the fact that
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Of course, we didn’t expect you to know the sum (1), so the looser bound gets full
credit. But we remark it is not difficult to show (1) by a Fourier argument.

3. One way is to use a trigonometry identity: sin(6;)sin(6s) = cos(6 — 92)5005’(91 +92) and get
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Thus the sine-cosine Fourier series for f(t) has just two terms. Using cos(t) = # and
cos(3t) = 81347287&, we get the exponential Fourier series to be
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But you don’t need to remember these trigonometry formulas: you can instead use the
Euler equations (these you must remember!)
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and multiply them to get directly (2), and from there the sine-cosine expansion.

If f(t) is approximated using only the first harmonic term %cos(t), the error is the third

harmonic term %cos(?)t) Hence, the mean-square-error in the approximation would be

Alternatively,
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