
EE 102 Homework #6 Solutions

Fall 2001 Professor Paganini
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We can get a tighter bound by noting that for � = 3T , and n 6= 0
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Of course, we didn't expect you to know the sum (1), so the looser bound gets full
credit. But we remark it is not di�cult to show (1) by a Fourier argument.

3. One way is to use a trigonometry identity: sin(�1)sin(�2) =
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Thus the sine-cosine Fourier series for f(t) has just two terms. Using cos(t) = eit+e�it
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But you don't need to remember these trigonometry formulas: you can instead use the
Euler equations (these you must remember!)
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and multiply them to get directly (2), and from there the sine-cosine expansion.
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