Electron Flow and Resistance: Ohm's (Ω) and Kirchoff's Laws

Session 1c of Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Basic Electricity

Two Sections

- Electron Flow and Resistance
 - 5 on-line sessions
 - Lab
- Inductance and Capacitance
 - 5 on-line sessions
 - Lab

Mastery Test, Part 1

Basic Electricity (Continued)

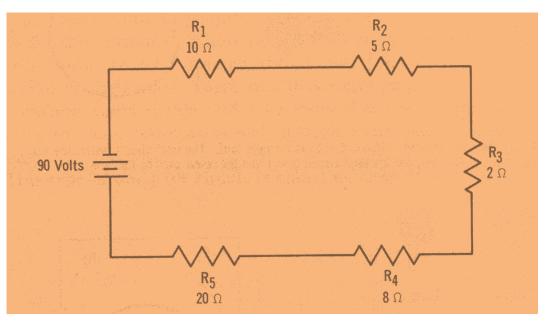
- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers several Modules and more)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds at <u>alex_tb@hotmail.com</u>)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos at <u>sokos@desupernet.net</u>)

Section 1:

Electron Flow and Resistance

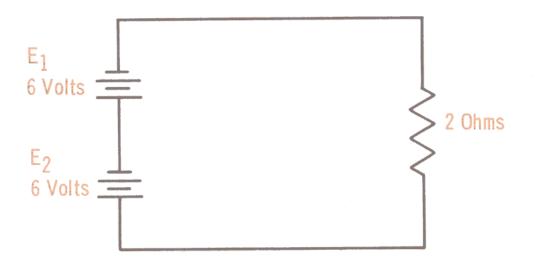
- **OBJECTIVES**: This section introduces five basic electrical concepts as well as the underlying atomic structure of electrical materials.
 - Conductance(G),
 - Resistance (R),
 - Current (I),
 - Power (P), and
 - Electromotive force (E) or voltage (V).

Section 1 Schedule:


Session a – 03/04 03/06 & 03/08 were Math Tutorials	Atoms, Charge and Current	Text 1.1 – 1.39
	Conductivity (G), Electric Fields and Electromotive Force (EMF)	Text 1.40 – 1.68
Session b – 03/11	Resistance (R), Conductance (G), Ohms Law (Ω) & Power (Watts)	Text 2.1 – 2.52
Session c – 03/13 (lab - 03/16, sat.)	Resistors in Series and Parallel and Working with Equations	Text 2.53 – 2.98
Session d – 03/18	Series / Parallel Simplification Kirchoff, Thevenin & Norton	2.99 - 2.115 2.116 - 2.133
Session $e - 03/20$	Review: The Water Model	1.42, 1.63, 2.5, 2.129 Sokos

Session 1b Review

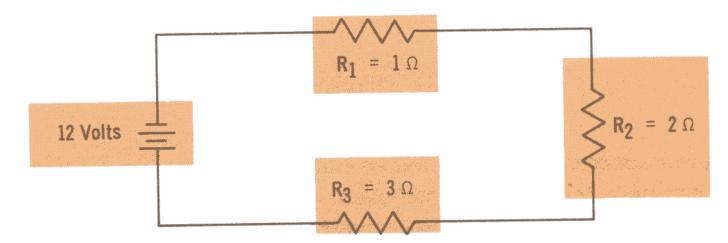
- Circuits
 - Open
 - Closed
- Switches
- Direct Current (DC) vs. Alternating Current (AC)
- Conductors
- Resistors and the Color Code
- Power (Voltage * Current)


Resistors in Series

- The same current passes through each series resistor
- The voltage "divides" among the resistors
- 90=I*(10+5+2+8+20)
- $R_{total} = 10 + 5 + 2 + 8 + 20$
- $R_{total} = 45$
- Series resistors add

Voltage Sources in Series

• Series voltages add (watch the \pm signs)

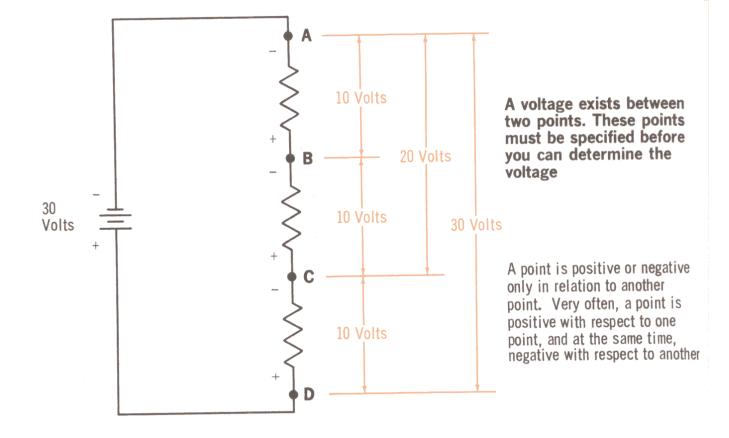

Adding up Total Power

- $\mathbf{P} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3$
- 12 = I*1 + I*2 + I*3
- $12 = I^*(1+2+3)$
- 12 = 6*I

- I=2 amps
- $P_n = I * V_n = I^2 * R_n$

•
$$P = 2^{2*}(1+2+3)$$

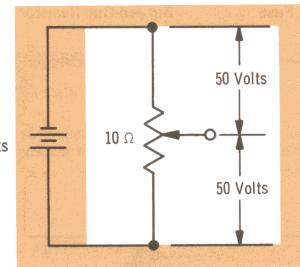
• P = 24 watts


Voltage Drops

- $R_{total} = 25\Omega$
- I=50/25=2 amps
- $V_1 = 2*5 = 10$ volts
- $V_2 = 2 * 20$ = 40 volts

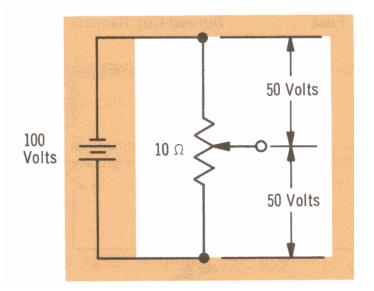
- 50 Volts = $R_2 = 20 \Omega$
- The voltage drops add to 50

 $\mathbf{R}_1 = \mathbf{5}\Omega$


Voltage is Relative (reference point / ground)

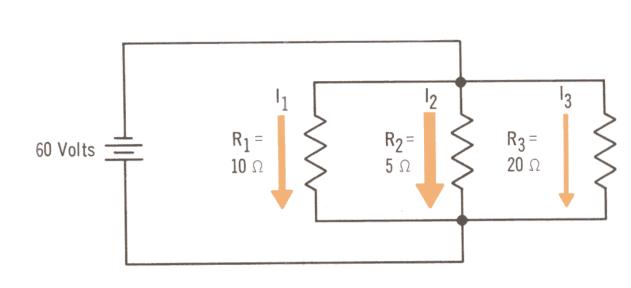
Potentiometers

- A variable resistor (Rheostat)
- 3 terminals
 - Top to bottom, fixed resistance
 - Wiper arm, variable resistance



Basic Electricity

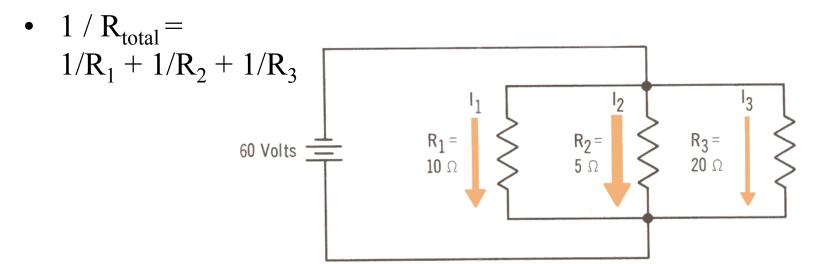
Potentiometer (continued)


- Effectively two variable resistors in series

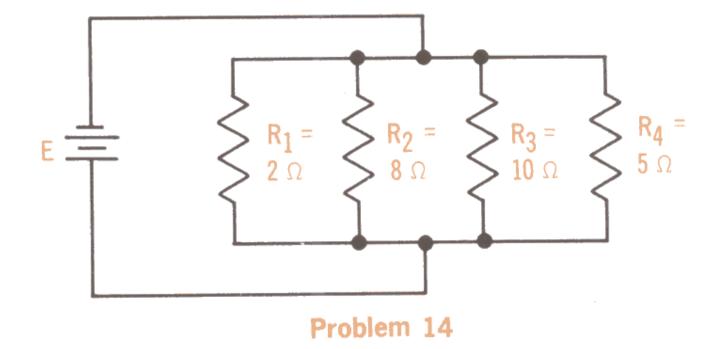
 Always add to same total resistance
 Forms an adjustable "Voltage Divider"
- Voltage divider $I = V/(R_1 + R_2)$ $V_{out} = I^* R_2$ $V_{out} = R_2 * V/(R_1 + R_2)$ $V_{out} / V = R_2/(R_1 + R_2)$

Parallel Resistors

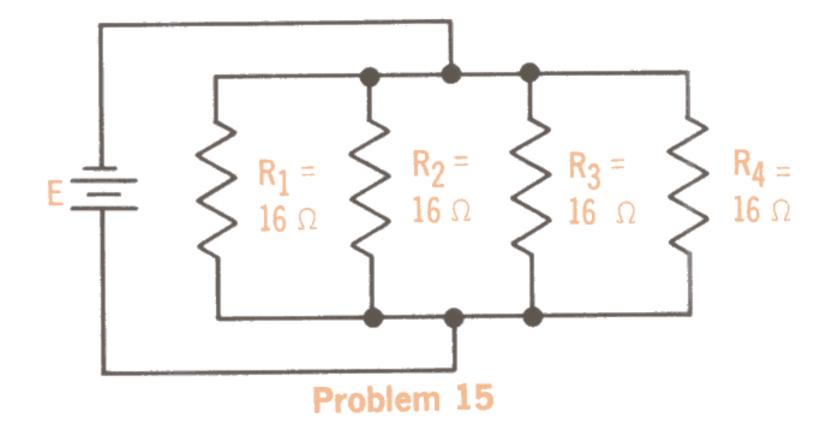
- The same voltage is across each parallel resistor
- The current "divides" among the resistors
- $I_1 = 60/10$ = 6 amps
- $I_2 = 60/5$ = 12 amps
- $I_3 = 60/20$ = 3 amps
- $I_{total} = 6 + 12 + 3$
- $I_{total} = 21$ amps

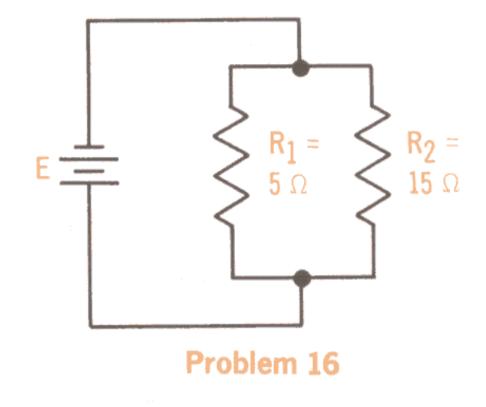


Basic Electricity


Adding Resistors in Parallel

•
$$V = I_{total} * R_{total} \text{ or } R_{total} = V / I_{total}$$


- $I_{total} = V/R_1 + V/R_2 + V/R_3$
- $R_{total} = 1/(1/R_1 + 1/R_2 + 1/R_3)$


Parallel Practice

More Parallel Practice

Still more Parallel Practice

Section 1 Schedule:

Session a – 03/04 03/06 & 03/08 were Math Tutorials	Atoms, Charge and Current	Text 1.1 – 1.39
	Conductivity (G), Electric Fields and Electromotive Force (EMF)	Text 1.40 – 1.68
Session b – 03/11	Resistance (R), Conductance (G), Ohms Law (Ω) & Power (Watts)	Text 2.1 – 2.52
	Resistors in Series and Parallel and Working with Equations	Text 2.53 – 2.98
Session d – 03/18	Series / Parallel Simplification Kirchoff, Thevenin & Norton	2.99 – 2.115 2.116 – 2.133
Session $e - 03/20$	Review: The Water Model	1.42, 1.63, 2.5, 2.129 Sokos