Electron Flow and Resistance: Kirchoff, Thevenin, & Norton Review: The Water Model

Session 1e of Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Basic Electricity

Two Sections

- Electron Flow and Resistance
 - 5 on-line sessions
 - Lab
- Inductance and Capacitance
 - 5 on-line sessions
 - Lab

Mastery Test, Part 1

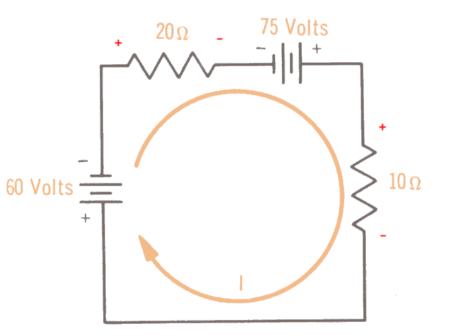
Basic Electricity (Continued)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers several Modules and more)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds at <u>alex_tb@hotmail.com</u>)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos at <u>sokos@desupernet.net</u>)

Section 1:

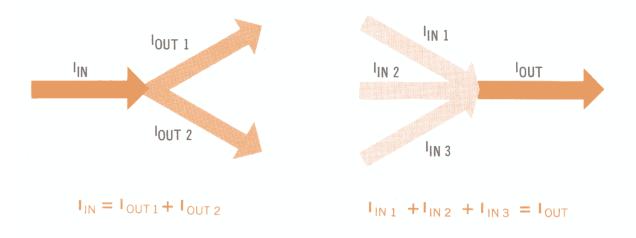
Electron Flow and Resistance

- **OBJECTIVES**: This section introduces five basic electrical concepts as well as the underlying atomic structure of electrical materials.
 - Conductance(G),
 - Resistance (R),
 - Current (I),
 - Power (P), and
 - Electromotive force (E) or voltage (V).

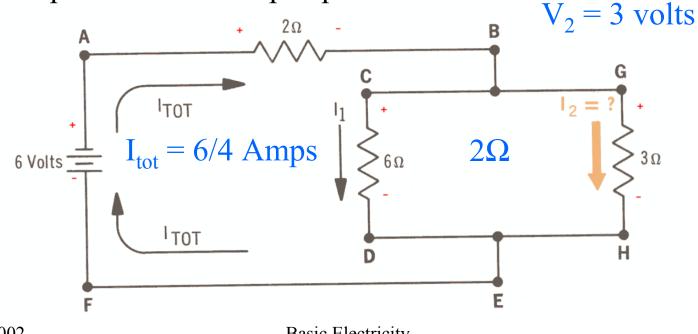

Section 1 Schedule:

Session a – 03/04 03/06 & 03/08 were Math Tutorials	Atoms, Charge and Current	Text 1.1 – 1.39
	Conductivity (G), Electric Fields and Electromotive Force (EMF)	Text 1.40 – 1.68
Session b – 03/11	Resistance (R), Conductance (G), Ohms Law (Ω) & Power (Watts)	Text 2.1 – 2.52
Session c – 03/13 (lab - 03/16, sat.)	Resistors in Series and Parallel and Working with Equations	Text 2.53 – 2.98
Session d – 03/18	Series / Parallel Simplification Voltage and Current Dividers	2.99 – 2.115
Session e – 03/20	Kirchoff, Thevenin & Norton Review: The Water Model	2.116 – 2.133 1.42, 1.63, 2.5, 2.129 Sokos

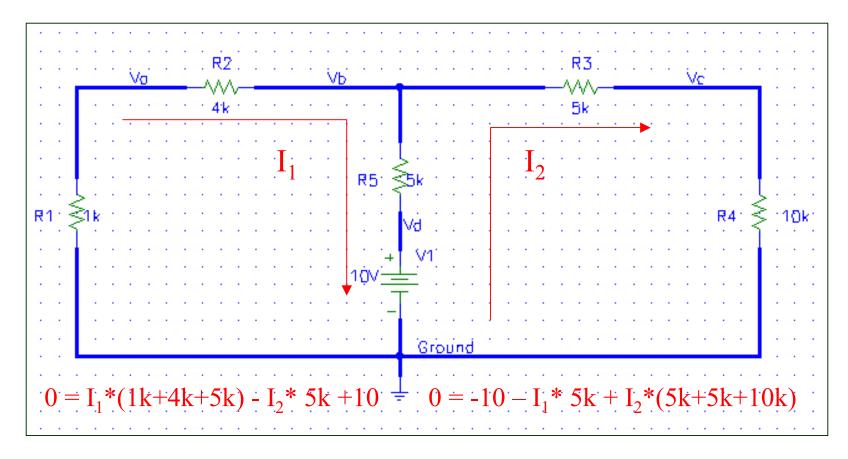
Kirchoff's Voltage Law


- The sum of all the voltages around a "loop" is zero
- Be careful to take signs into account
- Starting at the top left corner and going clockwise:

20 - 75 + 10 + 60 = 0


Kirchoff's Current Law

- The sum of all currents into a node equals zero.
- Again watch out for signs (direction of current flow)


Using Kirchoff

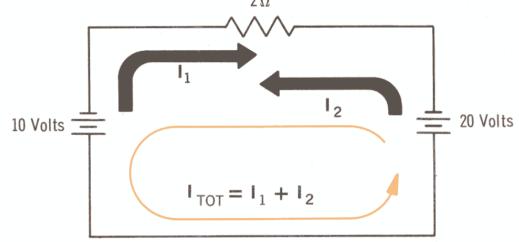
- Use voltage divider or,
- Kirchoff's Voltage Law and a current divider, or
- Set up and solve "Loop Equations"

Basic Electricity

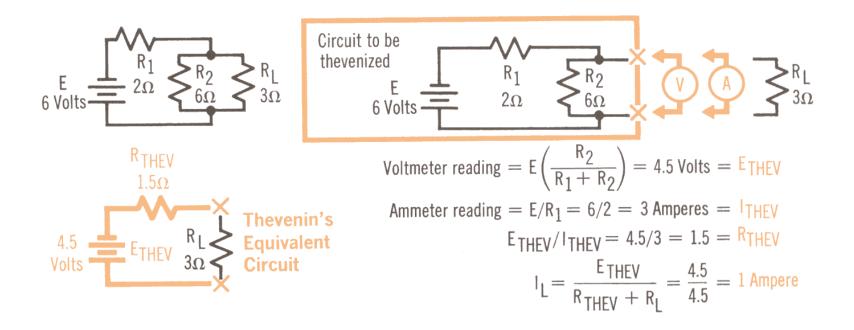
Kirchoff: Example 2 Using Loop Equations

Solving Loop Equations

$$0 = I_1 * (1k+4k+5k) - I_2 * 5k + 10 \text{ or} \qquad 0 = -10 - I_1 * 5k + I_2 * (5k+5k+10k) \text{ or} \\ 10 = -5k * I_1 + 20k * I_2 \text{ or} \\ -10 = 10k * I_1 - 5k * I_2 \qquad 20 = -10k * I_1 + 40k * I_2$$

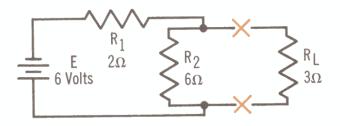

Adding the bottom two simplified equations $10 = 0 * I_1 + 35k *$ or $I_2 = 10/35 = 2/7$ mA and by substituting into one of the above $-10 = 10 * I_1 - 5 * 2/7$ $10 * I_1 = -10 + 5 * 2/7 = -70/7 + 10/7 = -60/7$ $I_1 = -6/7$ mA

The minus sign just says that I_1 goes in the other direction

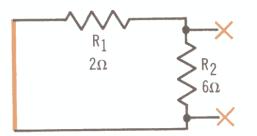

Basic Electricity

Superposition

- Linear systems (R, L and C circuits are linear)
 - You can deal separately with each power source and then add the resulting currents (or voltages) to get the total result.

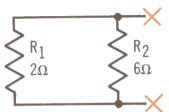


Thevenin Equivalent Circuits



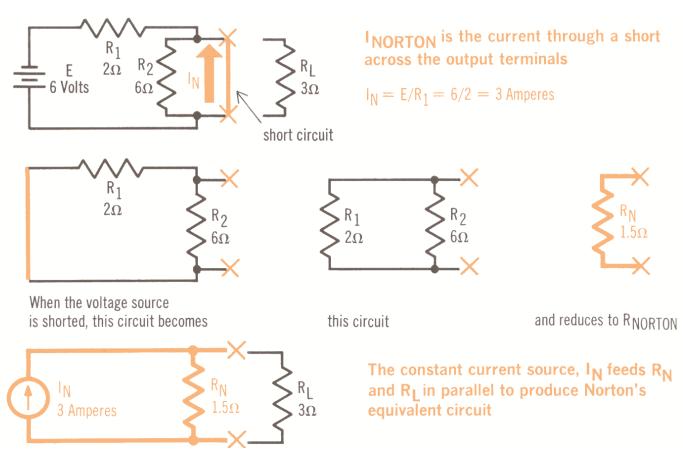
Basic Electricity

Thevenin (Continued)



E_{THEV} is the voltage drop across R₂ $E_{THEV} = E\left(\frac{R_2}{R_1 + R_2}\right) = 6 (6/8) = 4.5$ Volts

When the source voltage is shorted, this circuit becomes



this circuit

and reduces to RTHEV

E_{THEV} and R_{THEV} are connected in series with R_L to produce Thevenin's equivalent circuit

Norton Equivalent Circuits

Next Class

- Review of all topics in chapters 1 and 2 of the text
- Quiz (via email to see how we're doing)