Alternating Current & Sine Waves

Session 2a of Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Basic Electricity

Two Sections

- Electron Flow and Resistance
 - 5 on-line sessions
 - Lab
- Inductance and Capacitance
 - 5 on-line sessions
 - Lab

Mastery Test, Part 1

Basic Electricity (Continued)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers several Modules and more)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds at <u>alex_tb@hotmail.com</u>)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos at <u>sokos@desupernet.net</u>)

Section 2:

Electron Flow and Resistance

• **OBJECTIVES**: This section introduces AC voltage / current and additional circuit components (inductors, transformers and capacitors).

Section 1

Session $a - 03/04$	Atoms, Charge and Current	Text 1.1 – 1.39
03/06 & 03/08 were Math Tutorials	Conductivity (G), Electric Fields and Electromotive Force (EMF)	Text 1.40 – 1.68
Session b – 03/11	Resistance (R), Conductance (G), Ohms Law (Ω) & Power (Watts)	Text 2.1 – 2.52
Session c – 03/13 (lab - 03/16, sat.)	Resistors in Series and Parallel and Working with Equations	Text 2.53 – 2.98
Session d – 03/18	Series / Parallel Simplification Voltage and Current Dividers	2.99 - 2.115
Session $e - 03/20$	Kirchoff, Thevenin & Norton	2.116 - 2.133
Session f – 03/25 _{3/30/2002}	Review (Discuss Quiz_1) Basic Electricity	1.42, 1.63, 2.5, 2.129 Sokos 5

Section 2 Schedule:

Session 2a — 03/27	Alternating Current & Sine Waves	Text 3.1 – 3.41
Vector Math – 04/01	Sine Waves, Magnitude, Phase and Vectors	Text 4.1 – 4.24
Session 2b $-04/03$	Inductors and Circuits	Text 3.42 – 3.75
Session 2c $-04/08$	Transformers	Text 3.76 – 3.100
Session 2d - 04/10 (lab - 04/13, Sat.)	Capacitors	Text 3.101 – 3.135
Session 2e $-04/15$	More Capacitors	Text 3.135 – 3.148
Session 2f $-04/22$	Review (Discuss Quiz_2)	
3/30/2002	Basic Electricity	6

AC Current

- DC current
 - Always flows in one direction
- AC current
 - Changes direction at regular intervals

Unlike d-c current, which always flows in the same direction, a-c current periodically changes its direction

It reverses and flows in the

A-C CIRCUIT

AC vs. DC

- Thomas Alva Edison
 - Began the electrical power industry by inventing:
 - The incandescent electric light
 - The first practical electric power station
 - These inventions and his project to "light" a NYC neighborhood started:
 - Commonwealth Edison Company (and its siblings)
 - General Electric
 - Edison was a strong proponent of using DC power
 - He didn't recognize the value of transformers

AC and Transformers

- Power is conserved from input to output
- P = V*I, the transformer changes the ratio
- Only works for AC, Transformers can't deal with DC.

AC in Circuits

- An AC voltage "pushes" (pulls) an AC Current in a resistor circuit.
- Ohm's Law still applies (V = I*R)

The polarity of a-c power sources changes continuously. Each time the polarity reverses, the circuit current also changes direction

Basic Electricity

An AC Generator

• A coil of wire rotating in a Magnetic field will generate an AC voltage / current

Angle: Degrees and Radians

- Degrees, minutes and seconds
 - 360° gets you around a circle
 - Invented by map makers in the middle ages
 - Reused for Time measurements
- Radians (in calculators)
 - $2 * \pi (2 * 3.14159)$ gets you around a circle
 - The real angle measure
 - The distance traveled around the perimeter of a "unit" circle (r = 1)

Sine Waves and Angle

- V = 3*sine (angle)
 - Sine often shortened to sin [V = 3*sin(angle)]
 - 3 is the "Amplitude"
 - Starts at zero
 - Peak (3) at 90°($\pi/2$)
 - Zero again at $180^{\circ}(\pi)$
 - Negative Peak (-3) at 270°(3*π/2)
 - Zero to Finish the
 "Cycle" at 360°(2*π)

AC Generator and Sine Waves

- The AC generator's output is a sine wave
- Vertical speed of the left & right parts of the coil determines the value at any time

Basic Electricity

Square Waves

- There are other wave shapes ("Fluctuating DC")
- Square waves are the basis for computer logic later in this course

AC and DC Together

- Superposition again
 - Deal with each frequency term independently
 - DC is the zero frequency component of the waveform, it is also the "average" value over a full cycle of the waveform.

When a d-c voltage or current varies in an a-c way, it does not change direction. However, it fluctuates around the d-c reference level in exactly the same way that ac fluctuates around the zero level

3/30/2002

Frequency and "Cycles"

• Cycles per second is the frequency in Hertz (Hz)

Unit	Hertz	Kilohertz	Megahertz	GigaHertz
	(Hz)	(KHz)	(MHz)	(GHz)
Value	1	1000	1,000,000	1,000,000,000

The frequency of a voltage or current is the number of cycles generated each second. The frequency of this voltage is, therefore, 3 Hz

Period and Wavelength

- The period is "How long does a cycle take" (T in seconds)
- The Wavelength is "How far does the signal travel in one cycle" (λ in meters)

In-Phase Voltages/Currents

• In a resistive circuit, the current is "in-phase" with the voltage. (They move together)

Phase Difference

- Waveforms can be "out of phase"
- Note:

 $sin(2\pi ft - \pi/2) = cos(2\pi ft)$ Cosine is the full name

- Starts at 1 at t = 0
- Looks just like sine but at a different phase

When maximum and minimum points of one voltage or current occur before the corresponding points of another voltage or current, the two are out of phase. When such a phase difference exists, one of the voltages or currents leads, and the other lags

Waveform Average

- "Average"
 - Book: over a half cycle
 - Normal: over a full cycle (DC)
- "Half-Cycle" average is important later in AC to DC conversion (rectification)

RMS vs Peak value

- The Peak value is the Amplitude
- The "Effective" or RMS value is used in the Power Equation ($P = I_{eff} * V_{eff}$)
- "Root Mean Square" Square the values of the waveform.
 - Now take the average over a cycle Take the square root.

AC Current with a Resistor Load

- Ohm's Law
- I = V / R
- $I = 10*\sin(2\pi ft)/10$
- $I = 1 * \sin(2\pi f t)$
- $I = sin(2\pi ft)$

Basic Electricity

Section 2 Schedule:

Session 2a $-03/27$	Alternating Current & Sine Waves	Text 3.1 – 3.41	
Vector Math – 04/01	Sine Waves, Magnitude, Phase and Vectors	Text 4.1 – 4.24	
Session 2b - 04/03	Inductors and Circuits	Text 3.42 – 3.75	
Session 2c $-04/08$	Transformers	Text 3.76 – 3.100	
Session 2d - 04/10 (lab - 04/13, Sat.)	Capacitors	Text 3.101 – 3.135	
Session 2e $-04/15$	More Capacitors	Text 3.135 – 3.148	
Session 2f $-04/22$	Review (Discuss Quiz_2)		
3/30/2002	Basic Electricity	24	