Transformers

Session 2c of "Basic Electricity" A Fairfield University E-Course Powered by LearnLinc

Basic Electricity

Two Sections

- Electron Flow and Resistance
 - 5 on-line sessions
 - Lab
- Inductance and Capacitance
 - 5 on-line sessions
 - Lab

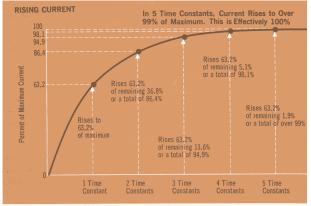
Mastery Test, Part 1

Basic Electricity (Continued)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers several Modules and more)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - Electronics Tutorial (Thanks to Alex Pounds)
 - Electronics Tutorial (Thanks to Mark Sokos)
 - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
 - Vector Math Tutorial (Thanks to California Polytec at atom.physics.calpoly.edu)

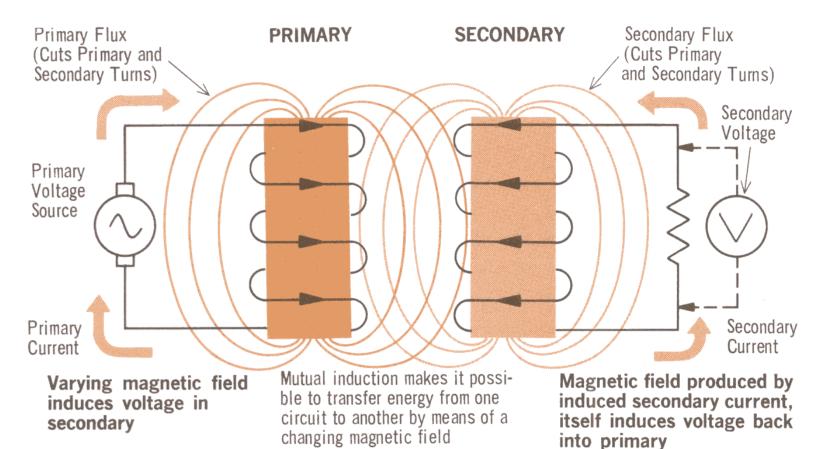
Section 2:

AC, Inductors and Capacitors


• **OBJECTIVES**: This section introduces AC voltage / current and additional circuit components (inductors, transformers and capacitors).

Section 2 Schedule:

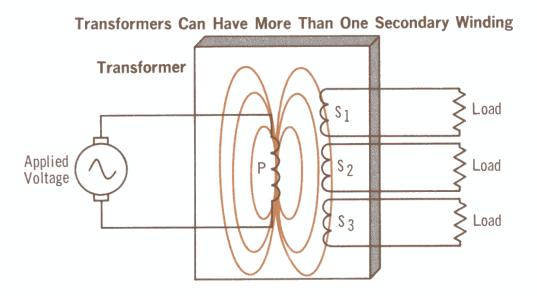
Session 2a — 03/27	Alternating Current & Sine Waves	Text 3.1 – 3.41
Vector Math – 04/01	Sine Waves, Magnitude, Phase and Vectors	Text 4.1 – 4.24
Session 2b $-04/03$	Inductors and Circuits	Text 3.42 – 3.73
(Fri. Q&A session) Session 2c – 04/08	Transformers	Text 3.74 – 3.100
Session 2d - 04/10 (lab - 04/13, Sat.)	Capacitors	Text 3.101 – 3.135
Session 2e $-04/15$	More Capacitors	Text 3.135 – 3.148
Session 2f - 04/22 4/7/2002	Review (Discuss Quiz_2) Basic Electricity	5


Inductor Session Review

- Inductors resist changes in their current with their "Reactance"
- Coiling a wire increases its inductance
- Time constant: $\tau = L/R$
- Inductor current "lags" the voltage 90° (Eli the ice man)
- Inductor Reactance $(X_L = 2\pi fL)$ determines the current magnitude $(|I| = |V| / X_L)$
- Series and Parallel Inductors

In each time constant, the current increases to a value 63.2% closer to its maximum value

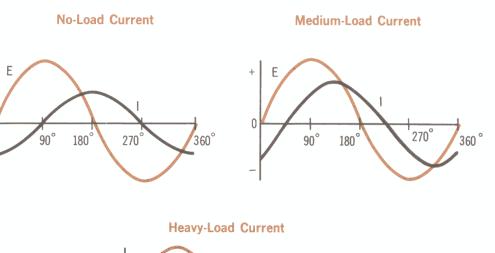
Mutual Inductance

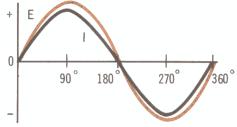

The Transformer

- Electrical energy is coupled from the "Primary" to the "Secondary"
- Provides "Isolation" (separate grounds)

Multiple Secondary Windings

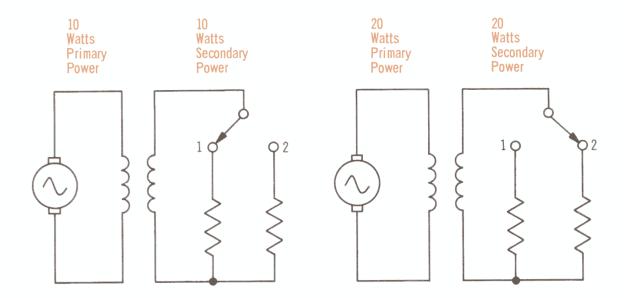
• Divide power among several loads



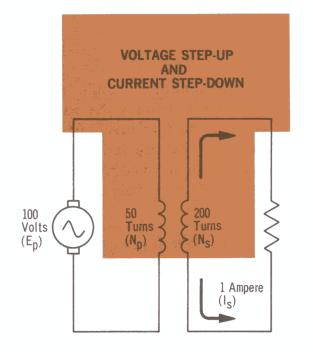

Coupling Coefficient (k)

- Perfect coupling: all flux goes through both coils (k=1)
- Normally k < 1 $M = k \sqrt{L_1 * L_2}$ (M is the Mutual Inductance)

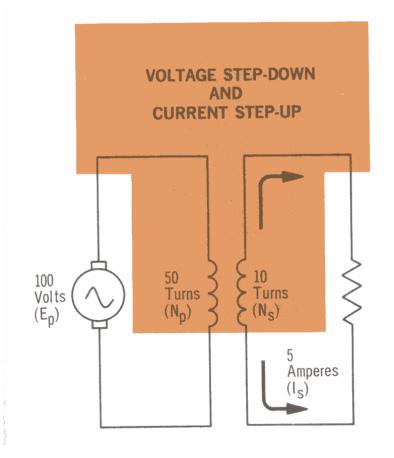
Phase Relationships


- Low power - Inductive load • High power - Resistive
 - Resistiv load

Transformers and Power

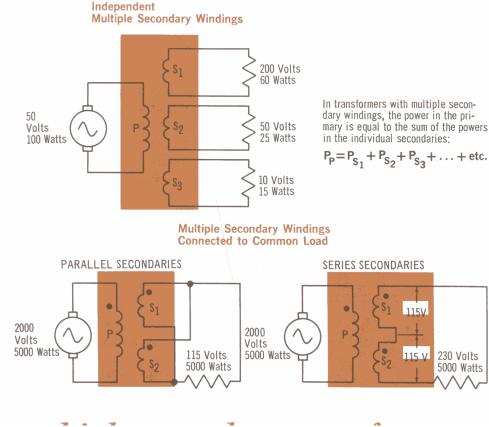

• Conservation of power

In an ideal transformer, the power in the primary circuit equals the power in the secondary circuit

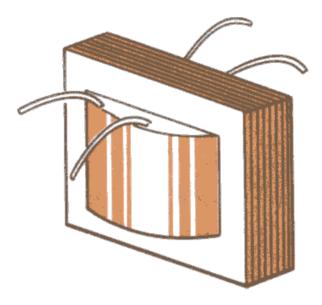

Turns Ratio: Step Up

- Vs = Vp * (Ns/Np)
- Is = Ip /(Ns/Np)

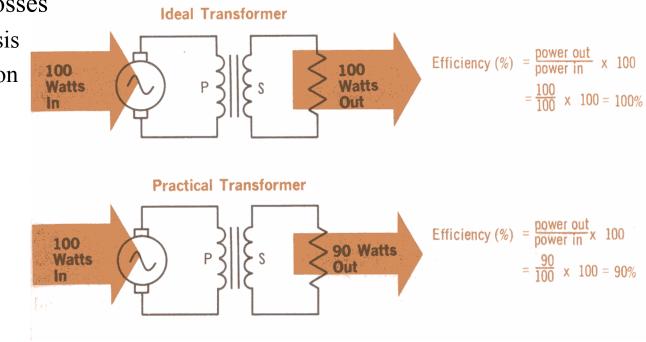
 $I_p = I_S (N_S/N_p) = 1 \times (200/50) = 4 \text{ amperes}$ $E_S = E_p (N_S/N_p) = 100 \times (200/50) = 400 \text{ volts}$ $P_p = E_p \times I_p = 100 \times 4 = 400 \text{ watts}$ $P_S = E_S \times I_S = 400 \times 1 = 400 \text{ watts}$


Turns Ratio: Step Down

 $I_{p} = I_{s} (N_{s}/N_{p}) = 5 \times (10/50) = 1 \text{ ampere}$ $E_{s} = E_{p} (N_{s}/N_{p}) = 100 \times (10/50) = 20 \text{ volts}$ $P_{p} = E_{p} \times I_{p} = 100 \times 1 = 100 \text{ watts}$ $P_{s} = E_{s} \times I_{s} = 20 \times 5 = 100 \text{ watts}$


Multiple Secondary Windings (again)

- Provide multiple voltages
 - Total power conserved
- Windings in parallel
 - add current
- Windings in series
 - add voltage


Real Transformers

- An "Iron Core" Transformer
 - Low frequency use
 - Power supplies
 - Home doorbell

Transformer Losses

- Conductor resistance
- Eddy currents
- Magnetic losses
 - Hysteresis
 - Saturation

Section 2 Schedule:

Alternating Current & Sine Waves	Text 3.1 – 3.41
Sine Waves, Magnitude, Phase and Vectors	Text 4.1 – 4.24
Inductors and Circuits	Text 3.42 – 3.73
Transformers	Text 3.74 – 3.100
Capacitors	Text 3.101 – 3.135
More Capacitors	Text 3.135 – 3.148
Review (Discuss Quiz_2) Basic Electricity	18
	Waves Sine Waves, Magnitude, Phase and Vectors Inductors and Circuits Transformers Capacitors More Capacitors Review (Discuss Quiz_2)