Capacitors Continued

Session 2e of "Basic Electricity" A Fairfield University E-Course Powered by LearnLinc

Basic Electricity

Two Sections

- Electron Flow and Resistance
 - 5 on-line sessions
 - Lab
- Inductance and Capacitance
 - 5 on-line sessions
 - Lab

Mastery Test, Part 1

Basic Electricity (Continued)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers several Modules and more)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - Electronics Tutorial (Thanks to Alex Pounds)
 - Electronics Tutorial (Thanks to Mark Sokos)
 - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
 - Vector Math Tutorial (Thanks to California Polytec at atom.physics.calpoly.edu)

Section 2:

AC, Inductors and Capacitors

• **OBJECTIVES**: This section introduces AC voltage / current and additional circuit components (inductors, transformers and capacitors).

Section 2 Schedule:

Session 2a — 03/27	Alternating Current & Sine Waves	Text 3.1 – 3.41
Vector Math – 04/01	Sine Waves, Magnitude, Phase and Vectors	Text 4.1 – 4.24
Session 2b $-04/03$ (Fri 0 & A session)	Inductors and Circuits	Text 3.42 – 3.73
Session $2c - 04/08$	Transformers	Text 3.74 – 3.100
Session 2d - 04/10 (lab - 04/13, Sat.)	Capacitors	Text 3.101 – 3.135
Session 2e — 04/15	More Capacitors	Text 3.135 – 3.148
Session 2f $-04/22$	Review (Discuss Quiz_2)	
4/14/2002	Basic Electricity	5

Capacitor 1 Session Review

- Energy stored in an electric field
- C = Q / V (Farads)
- Time constant
 - $-\tau = R * C$
 - -63.2% each τ
- Capacitors in parallel add
- Capacitors in series add as inverses
- AC & capacitors
 - Capacitive reactance $Xc = 1 / (2 * \pi * f * C)$
 - |I| = |V| / Xc
 - Current "Leads" Voltage (ICE)

Voltage: pressure at bottom

DC and AC Superposition

- Superposition
 - DC is the average value of the Voltage or Current
 - AC is the fluctuation about the "mean"
- A series capacitor
 - Blocks DC current
 - Only AC voltage across the series resistor

Power Factor

- Power Factor
 - AC power circuits
 - PF = cos(θ) :
 θ is the phase difference between the voltage and current supplied by the power source
- True Power
 - Resistive circuit: P = V*I
 - Reactive circuit: $P = V^*I^*\cos(\theta)$

Ceramic Capacitor

- Metallic film deposited on a ceramic tube forms the capacitor "plates"
- Ceramic "disk" capacitors most common
 - Metal deposited on sides of a ceramic disk insulator.

Mica Capacitor

- Layers of metal foil (often silver) separated by mica insulators.
- High breakdown voltage, low loss, but expensive

Electrolytic Capacitor

- Polarized Dielectric material
 - One aluminum "plate" is oxidized
 - Dielectric no longer a good insulator if the voltage is reversed
- High capacitor values (e.g. 4700µF) are possible
- Can fail violently
 - Breakdown voltage exceeded
 - Polarity reversed

Electrolytic Capacitor continued

- Sealed in a metal case
- Positive terminal indicated
 - Longer lead
 - Lead at marked end of case
- Used for power supply "Filters"
- Often several separate capacitors are packaged in one case.
- Small size: use tantalum dielectric

Adjustable Capacitors

- Parallel plate capacitor shown
 - "Tuning" capacitor in radios
 - "Resonance: cancel inductor reactance at one frequency
- "Trimmer" capacitors:
 - Vary distance between plates

Capacitor Color Codes

- Not Standardized
- Similar to the resistor codes

Basic Electricity

Section 2 Schedule:

(no Wed. session) Session 2f - 04/22	Review (Discuss Quiz 2)	
Session 2e $-04/15$ Quiz 2	More Capacitors	Text 3.135 – 3.148
Session 2d - 04/10 (lab - 04/13, Sat.)	Capacitors	Text 3.101 – 3.135
(Fri. Q&A session) Session $2c - 04/08$	Transformers	Text 3.74 – 3.100
Session 2b $-04/03$	Inductors and Circuits	Text 3.42 – 3.73
Vector Math – 04/01	Sine Waves, Magnitude, Phase and Vectors	Text 4.1 – 4.24
Session 2a $-03/27$	Alternating Current & Sine Waves	Text 3.1 – 3.41

Basic Electricity