Resistor-Capacitor (RC) Circuits

Session 3c for Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Module: Basic Electronics (AC Circuits and Impedance: two parts)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers much more material than this section)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
 - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
 - <u>Vector Math Tutorial</u> (Thanks to California Polytec at <u>atom.physics.calpoly.edu</u>)
- Alternating Current and Impedance
 - 5 on-line sessions plus one lab
- Resonance and Filters
 - 5 on-line sessions plus one lab

Section 3:

AC, Inductors and Capacitors

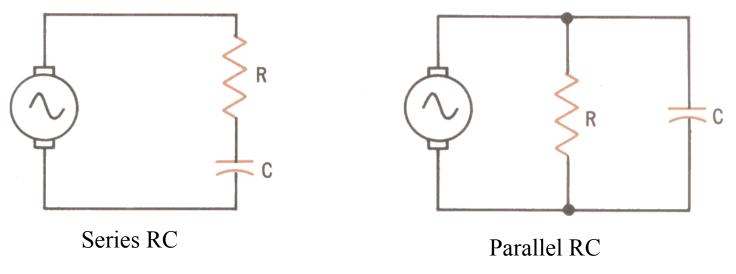
• OBJECTIVES: This section introduces AC voltage / current and their effects on circuit components (resistors, inductors, transformers and capacitors). The concept of impedance and the use of the vector analogy for computations is also introduced.

Section 3 Schedule:

Session 3a	- 05/13	Sine Waves, Magnitude, Phase and Vectors (again)	Text 4.1 – 4.24
3a continued	-05/20	Complete 3a	
Session 3b	- 05/22	R-L Circuits (no class on 05/27)	Text 4.25 – 4.54
3b continued	-05/29	Complete 3b	
Session 3c	- 06/03	R-C Circuits	Text 4.55 – 4.76
Session 3d	- 06/05		Text 4.77 – 4.88,
(1_{2})		Series RLC Circuits	4.89 - 4.113
(lab - 06/08, S	,		T. (111 / 1100
Session 3e		Parallel LC Circuits	Text 4.114 – 4.122,
(Quiz 3 due 06/16)		Parallel RLC Circuits	4.123 - 4.146
Session 3f	- 06/17	Review (Discuss Quiz 3)	
6/3/2002		Basic Electricity	4

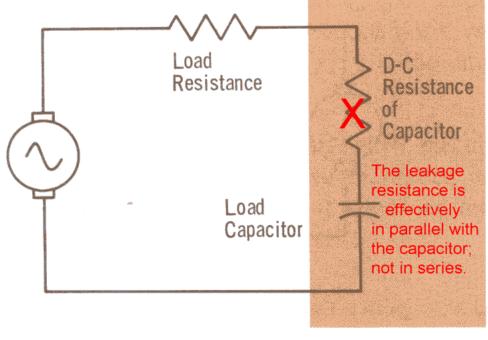
Session 3b (R-L) Review

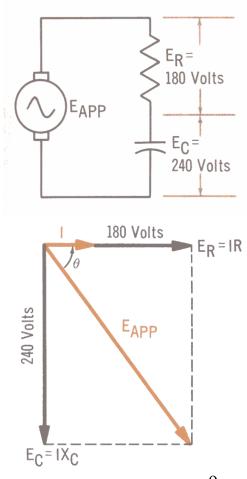
- Inductive reactance $X_L = 2\pi f L$ at 90°
- Impedances (R, X_L) in series add as vectors (Phasors).
- Impedances in parallel add as inverses
- Multiplying Vectors
 - Multiply their magnitudes (lengths)
 - Add their phases
- Dividing Vectors
 - Divide their magnitudes (lengths)
 - Subtract their phases
- Ohm's and Kirchoff's laws still work


Session 3a (Vectors) Review

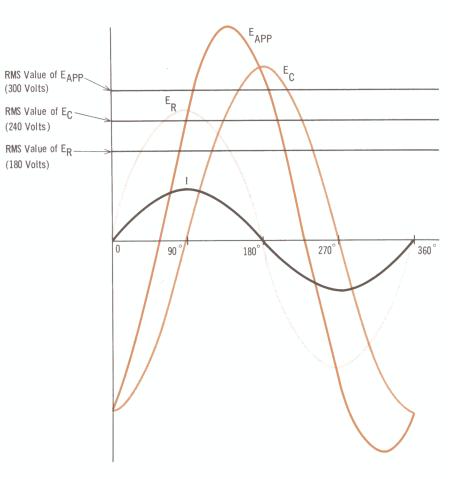
- Vector Analogy (frequency is not shown, corresponds to rotation)
 - Vector length corresponds to signal amplitude
 - Vector angle corresponds to phase (need a reference phase)
 - $sin(2\pi ft)$: vertical vector (points up)
 - $cos(2\pi ft)$: horizontal vector (points right)
- Vector Addition
 - Head-to-Tail
 - Parallelogram
- Vector Components (θ is the angle w.r.t. the horizontal axis)
 - Horizontal component: $A^*\cos(\theta)$
 - Vertical component : $A^*sin(\theta)$
- You can add vectors by adding their corresponding components!

R-C Circuits


- 10:1 Ratio
 - If the effect of resistance (reactance) is 10 time larger than reactance (resistance), the smaller can be generally ignored in computations

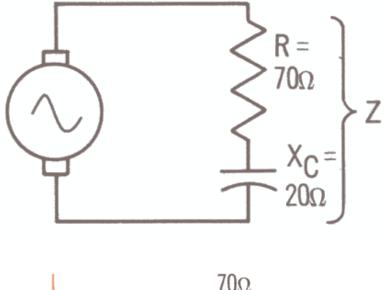

Capacitor Leakage Resistance

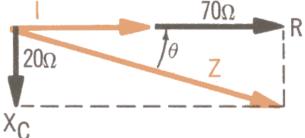
• DC leakage resistance is in parallel with the capacitor. (**Text Error**)


Series RC Voltages

- Current is the same in all components; Use it as the reference.
- Voltage across the resistor is in phase with the current.
- Voltage across the capacitor lags (ICE) by 90° (*minus* π/2).
- E_{app} is the vector sum. - $|Z| = (180^2 + 240^2)^{\frac{1}{2}} = 300 \Omega$
 - $\angle Z = \arctan(-240/180) = \arctan(-1.33)$ = -0.93 radians or -53.1°

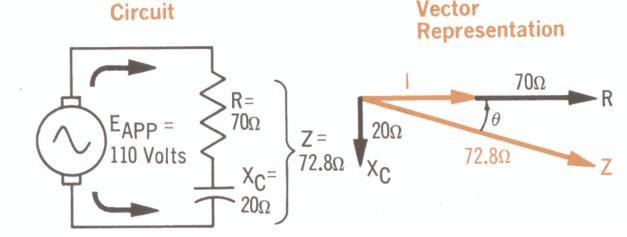
Series RC Voltage Waveforms


- Current is again the reference phase (shown as a sine wave).
- Capacitor voltage is –cos (lagging by 90°)
- Every point on E_{app} is the sum of the instantaneous values of E_R and E_C

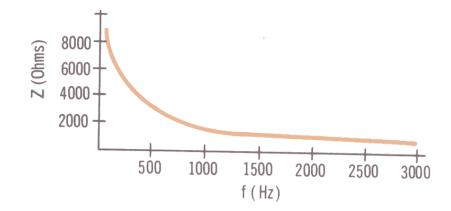


Series RC Impedance

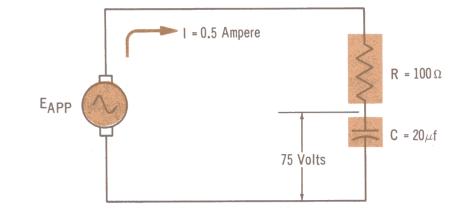
- Resistance is always treated as zero phase (to the right).
- Capacitive reactance, X_C, is then at -90° (down).
- Total impedance, Z, is then the vector sum of R and X_C.


$$- |Z| = (702 + 202)1/2 = 72.8 Ω$$

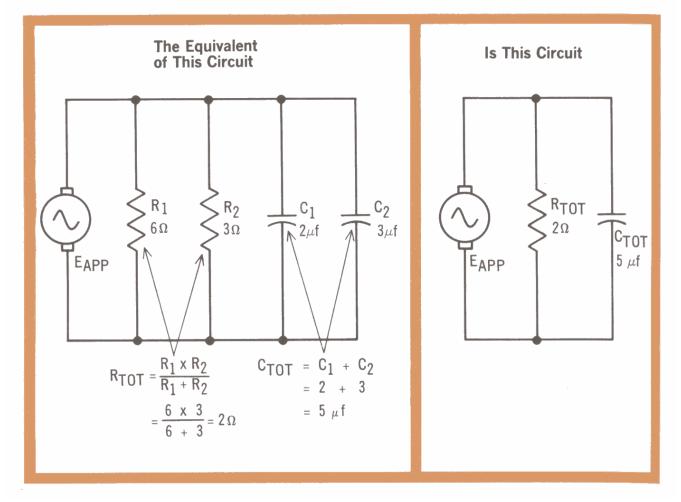
- ∠Z = arctan(-20/70)
= arctan(-0.2857)
= -0.2783 radians or -16°
note: the picture shows θ backwards


Ohm's Law Again

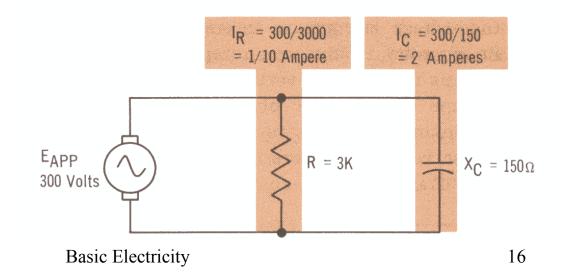
- $Z = 72.8 \angle -16^{\circ}$
- $V = 110 \angle 0^{\circ}$ (using E_{app} as the reference phase) (if I is the reference, then V is at -16°)
- $I = V / Z = 110/72.8 \angle 16^{\circ} = 1.51 \angle 16^{\circ}$


Effect of Changing Frequency

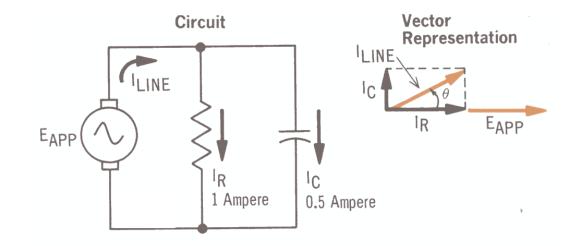
- At low frequency the capacitive reactance is high and dominates the impedance.
- At high frequencies the capacitive reactance goes to zero and the resistor dominates the impedance.


Serial RC Exercise

- $X_{C} = E_{C} / I$ = 150 Ω (at -90°)
- $|Z| = (100^2 + 150^2)^{\frac{1}{2}}$ = 180 Ω
- $\angle Z = \arctan(-150/100)$ = $\arctan(-1.5)$ = -56.3°


- $E_{app} = I * Z = 90 \angle -56.3^{\circ}$
- $f = 1/(2\pi CX_C)$ =1/(6.28*0.00002*150) = 53 Hz

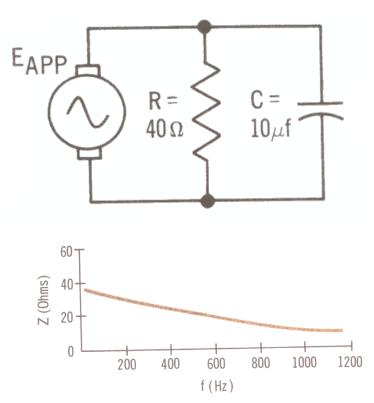
Parallel RC Circuits


Branch Currents

- Voltages are the same across all branches.
- Calculate currents independently.
- Note that I_C is at 90°. (E_{app} is the reference phase)

Line Current

 The total or Line current is the vector sum of the branch currents (Kirchoff's Current Law)



Parallel RC Impedance

- Impedances in parallel add as inverses $\frac{1}{Z} = \frac{1}{R} + \frac{1}{X_C}$ $\frac{1}{Z} = \frac{1}{30} + \frac{1}{30 \swarrow - 90^{\circ}}$ $\frac{1}{Z} = .0333 + 0.0333 \angle 90^{\circ}$ EAPP X^C = R= 300 $\frac{1}{Z} = 0.047 \angle 45^{\circ}$
 - $Z = 21 \angle -45^{\circ}$

The Effect of Frequency

- At low frequencies the capacitance is high so the resistance dominates.
- At high frequencies the capacitance goes to zero and dominates.

Section 3 Schedule:

Session 3a	- 05/13	Sine Waves, Magnitude, Phase and Vectors (again)	Text 4.1 – 4.24		
3a continued	-05/20	Complete 3a			
Session 3b	- 05/22	R-L Circuits (no class on 05/27)	Text 4.25 – 4.54		
3b continued	-05/29	Complete 3b			
Session 3c	- 06/03	R-C Circuits	Text 4.55 – 4.76		
Session 3d (lab - 06/08, S	– 06/05 Sat.)	Series LC Circuits Series RLC Circuits	Text 4.77 – 4.88, 4.89 – 4.113		
Can we do it Sunday?					
Session 3e	-06/10	Parallel LC Circuits	Text 4.114 – 4.122,		
(Quiz 3 due 06/16)		Parallel RLC Circuits	4.123 - 4.146		
Session 3f 6/3/2002	- 06/17	Review (Discuss Quiz 3) Basic Electricity	20		