Inductor-Capacitor (LC) Circuits

Session 3d for Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Module: Basic Electronics (AC Circuits and Impedance: two parts)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers much more material than this section)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
 - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
 - <u>Vector Math Tutorial</u> (Thanks to California Polytec at <u>atom.physics.calpoly.edu</u>)
- Alternating Current and Impedance
 - 5 on-line sessions plus one lab
- Resonance and Filters
 - 5 on-line sessions plus one lab

Section 3:

AC, Inductors and Capacitors

• OBJECTIVES: This section introduces AC voltage / current and their effects on circuit components (resistors, inductors, transformers and capacitors). The concept of impedance and the use of the vector analogy for computations is also introduced.

Section 3 Schedule:

Session 3a	-05/13	Sine Waves, Magnitude, Phase	Text 4.1 – 4.24
		and Vectors (again)	

3a continued	-05/20	Complete 3a	
Session 3b	- 05/22	R-L Circuits (no class on 05/27)	Text 4.25 – 4.54
3b continued	-05/29	Complete 3b	
Session 3c	- 06/03	R-C Circuits	Text 4.55 – 4.76
Session 3d (lab - 06/08, Sa	- 06/05 at.)	Series LC Circuits	Text 4.77 – 4.88
Session 3e (Quiz 3 due 06	- 06/10 /16)	Series RLC Circuits	Text 4.89 – 4.113

Session 3f -06/17 Review (Discuss Quiz 3)

Session 3c (R-C) Review

- Capacitive reactance $X_C = 1/2\pi fC$ at -90° (Note: $X_L = 2\pi fL$ at -90°)
- Impedances (R, X_{L} , X_{C}) in series add as vectors (Phasors).
- Impedances in parallel add as inverses
 - Adding Vectors
 - Separately add their horizontal and vertical components
 - Graphically: head-to-tail or parallelogram
 - Multiplying Vectors
 - Multiply their magnitudes (lengths)
 - Add their phases
 - Dividing Vectors
 - Divide their magnitudes (lengths)
 - Subtract their phases
- Ohm's and Kirchoff's laws still work with AC
- Real power is only dissipated in resistors

Series LC-Voltage

- AC voltages add as vectors
- Current is the same in all series components
 - the reference phase
- Inductor voltage drop (E_L) points up (leads current by 90°)
- Capacitor voltage drop (E_C) points up (lags current by 90°)
- Add E_L and E_C to get E_{APP}
 - $E_{\rm L} = 20 \angle 90^{\circ}$
 - $E_{\rm C} = 40 \angle -90^{\circ} = -40 \angle 90^{\circ}$
 - $E_{APP} = -20 \angle 90^\circ = 20 \angle -90^\circ$ (capacitive circuit)

Series LC – Voltage Waveforms Inductive Circuit

- Current (reference phase) is a sine
- E_L leads and is a cosine
- E_C lags and is a negative cosine
- They subtract to yield E_{APP} as a positive cosine (Inductive)

Basic Electricity

Series LC - Impedance

- Impedances in series add as vectors
- X_L and X_C are in opposite directions
 - Magnitudes subtract
 - $Z = 110 \angle 90^{\circ}$ (Inductive)

Series LC Inductive vs. Capacitive

- The circuit acts capacitive when the capacitive reactance dominates
- The circuit acts inductive when the inductive reactance dominates
- "Resonance" occurs when they are equal

Series LC - Power

- No real power is dissipated (no resistance)
- Power is alternately stored and returned
 Magnetic Field (Inductor)
 - -Electric Field (Capacitor)

True Power in an Ideal LC Circuit is Zero

Basic Electricity

The Effect of Frequency

- Top at 40 Hz
 - $X_{\rm L} = 2\pi * 40 * 1 = 251\Omega$
 - $X_{\rm C} = 1/2\pi * 40 * 10^{-6} = -3981\Omega$
 - $Z = -3730\Omega$ (capacitive)
- Top at 160 Hz
 - $X_{\rm L} = 2\pi * 160 * 1 = 1005\Omega$
 - $X_{\rm C} = 1/2\pi * 160 * 10^{-6} = -995\Omega$
 - $Z = 10\Omega$ (inductive, near resonance)
- Bottom at 40 Hz
 - $X_{\rm L} = 2\pi * 40 * 10 = 2512\Omega$
 - $X_{\rm C} = 1/2\pi * 40 * 10^{-6} = -3981\Omega$ book error
 - $Z = -1469\Omega$ (capacitive)

Series RC Example

• $Z = 2\pi *60*5 - 1/(2\pi *60*20*10^{-6})$ = $1884 - 1/(7512*10^{-6})$ = $1884 - 1/(0.7512*10^{-2})$ = $1884 - 1.331*10^2$ = $1884 - 133.1 = 1751\Omega$ at 90°

- I = $220\angle 0 / 1751\angle 90^{\circ}$ = 0.1256 Amps at -90° (negative sine; E_{APP} is cosine)
- $E_L = 0.1256 \angle -90^\circ * 1884 \angle 90^\circ = 237$ volts at 0°
- $E_{C} = 0.1256 \angle -90^{\circ} * 133.1 \angle -90^{\circ} = 17$ volts at $180^{\circ} = -17$ volts at 0°
- Note that $E_{APP} = E_L E_C = 220$ volts at 0° (Kirchoff's Voltage Law)

Section 3 Schedule:

Session 3a	- 05/13	Sine Waves, Magnitude, Phase and Vectors (again)	Text 4.1 – 4.24
3a continued	-05/20	Complete 3a	
Session 3b	- 05/22	R-L Circuits (no class on 05/27)	Text 4.25 – 4.54
3b continued	-05/29	Complete 3b	
Session 3c	- 06/03	R-C Circuits	Text 4.55 – 4.76
Session 3d	- 06/05	Series LC Circuits	Text 4.77 – 4.88
(lab - 06/08, S)	bat.)		
Session 3e	- 06/10	Series RLC Circuits	Text 4.89 – 4.113
(Quiz 3 due 0	6/16)		
Session 3f	-06/17	Review (Discuss Quiz 3)	