Resistor-Inductor-Capacitor (RLC) Circuits

Session 3e for Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Module: Basic Electronics (AC Circuits and Impedance: two parts)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers much more material than this section)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
 - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
 - <u>Vector Math Tutorial</u> (Thanks to California Polytec at <u>atom.physics.calpoly.edu</u>)
- Alternating Current and Impedance
 - 5 on-line sessions plus one lab
- Resonance and Filters
 - 5 on-line sessions plus one lab

Section 4:

AC, Inductors and Capacitors

• OBJECTIVES: This section discusses AC voltage / current and their effects on parallel circuit components (resistors, inductors, transformers and capacitors). The concept of resonance and its use to produce filters is also described.

Section 4 Schedule:

Session 4a	- 06/24	Parallel L-R-C Circuits	Text 4.114 – 4.122
Session 4b	- 06/26	Parallel L-R-C Circuits Cont.	Text 4.123 – 4.132
(have a nice	July 4)	(no class on 07/02 or 07/04)	
Session 4c	-07/08	Parallel Resonance	Text 4.133 – 4.146
Session 4d	-07/10	Tuning and Filters	Text 4.147 – 4.151
(break for a	week)		
Session 4e	-07/22	Transformers and Impedance	Text 4.152 – 4.160
(Quiz 4 due 07/28)		Matching	
(lab - 07/27,	Sat.)		
Session 4f	-07/29	Review (Discuss Quiz 4)	
	07/31	MT2 Review	
		MT2 – AC Circuits	

Session 3 (series R-L-C) Review

- Capacitive reactance $X_C = 1/2\pi fC$ at -90°
- Inductive reactance $X_L = 2\pi f L$ at 90°
- Impedances (R, X_{L} , X_{C}) in series add as vectors (Phasors).
- Impedances in parallel add as inverses
 - Adding Vectors
 - Separately add their horizontal and vertical components
 - Graphically: head-to-tail or parallelogram
 - Multiplying Vectors
 - Multiply their magnitudes (lengths)
 - Add their phases
 - Dividing Vectors
 - Divide their magnitudes (lengths)
 - Subtract their phases
- Ohm's and Kirchoff's laws still work with AC
- Inductive and capacitive reactances are both vertical and exactly 180° out of phase; They subtract!

Parallel L-C Circuits

- Voltage (ref. phase) is the same across all parallel components
- Branch currents add (vectors) to produce I_{Line}
- Impedances in parallel add (vectors) as inverses

Parallel LC- Current

- AC currents always add as vectors
- Voltage (ref. Phase) is the same across all parallel components
- Inductor I_L points down (Lags voltage by 90°)
- Capacitor I_C points up (Leads voltage by 90°)
- Add I_L and I_C (they subtract) to get I_{Line}
 - $I_{\rm L} = 2 \angle -90^{\circ}$
 - $I_C = 3 \angle 90^\circ = 3 \angle 90^\circ$
 - $I_{\text{Line}} = (3-2) \angle 90^\circ = 1 \angle 90^\circ$ (capacitive circuit)

Parallel LC- Current Again

- AC currents always add as vectors
- Voltage (ref. Phase) is the same across all parallel components
- Inductor I_L points down (Lags voltage by 90°)
- Capacitor I_C points up (Leads voltage by 90°)
- Add I_L and I_C (they subtract) to get I_{Line}
 - $I_{\rm L} = 4 \angle -90^{\circ}$
 - $I_C = 1 \angle 90^\circ = 3 \angle 90^\circ$
 - $I_{\text{Line}} = (4-1) \angle -90^\circ = 1 \angle 90^\circ$ (inductive circuit)

Basic Electricity

Parallel LC - Impedance

- Impedances in parallel add as inverse vectors
- X_L (up) and X_C (down) are in opposite directions
 - Magnitudes subtract
- $X_{top} = (100-50) \angle 90^{\circ} = 50 \angle 90^{\circ}$ (Inductive)
- $X_{bottom} = (50-40) \angle 90^{\circ} = 10 \angle -90^{\circ}$ (Capacitive)

Parallel LC: Example

- $I = E_{app} / Z$
- $X_L = 2\pi f L = 6.28 * 400 * 0.005$ = 12.56 $\Omega \angle 90^\circ$
- $X_{C} = 1/2\pi fC =$
 - $= 1/6.28*400*0.01*10^{-6}$
 - $= 1/2512*10^{-8}$
 - $= 0.0003981*10^{8}$
 - = 39,810Ω∠-90°

Note: Error in text. The currents are wrong given the component values and frequency.

Parallel LC: Example

Currents

- $I_L = E_{app} / X_L$ = 110\angle 0° / 12.56\angle \angle 90° = 8.76 amps \angle -90°
- $I_C = E_{app} / X_C$ = 110\arrow0° / 39,810\arrow\arrow-90° = 2.8 milliamps \arrow90
- $I_{\text{line}} = I_{\text{L}} + I_{\text{C}}$ (but they subtract) = 8.73 amps $\angle -90^{\circ}$
- This is an inductive circuit

Problem 31

Note: Error in text. The currents are wrong given the component values and frequency.

Parallel LC: Example

Impedances

$$\begin{split} 1/Z_{\text{Total}} &= 1/X_{\text{L}} + 1/X_{\text{C}} \\ &= 1 / 12.56\Omega \angle 90^{\circ} + 1 / 39,810\Omega \angle -90^{\circ} \\ &= 0.07961 \angle -90^{\circ} + 0.0000251\Omega \angle 90^{\circ} \\ &= 0.07959 \angle -90^{\circ} \\ Z_{\text{Total}} &= 1 / 0.07959 \angle -90^{\circ} \\ &= 12.57\Omega \angle 90^{\circ} \end{split}$$

• This is an inductive circuit

Note: Error in text. The currents are wrong given the component values and frequency.

The Effect of Frequency

- $Z_L = 2\pi f L$ (rises linearly with frequency)
- $Z_{\rm C} = 1/2\pi f L$ (decreases with frequency)
- Resonance is when they are equal and cancel; the impedance is then just the resistance

Parallel L-C Circuits: Frequency and Impedance

- The total reactance is always higher than either X_L or X_L since the inverses subtract.
- At some frequency (Resonance), the inverse reactances cancel and 1/Z_{total} = 0 causing an extreme increase in total Impedance and the current approaches zero.

Section 4 Preliminary Schedule:

Session 4a	-06/24	Parallel L-C Circuits	Text 4.114 – 4.122
Session 4b	- 06/26	Parallel L-R-C Circuits	Text 4.123 – 4.132
(have a nice July 4)		(no class on 07/02 or 07/04)	
Session 4c	-07/08	Parallel Resonance	Text 4.132 – 4.146
Session 4d	-07/10	Tuning and Filters	Text 4.147 – 4.151
(break for a week)		(no class on 07/15 or 07/17)	
Session 4e	-07/22	Transformers and Impedance	Text 4.152 – 4.160
(Quiz 4 due 07/28)		Matching	
(lab - 07/27,	Sat.)		
Session 4f	- 07/29	Review (Discuss Quiz 4)	
	07/31	MT2 Review	
		MT2 – AC Circuits	