Parallel Inductor-Resistor-Capacitor (RLC) Circuits

Session 4b for Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Module: Basic Electronics (AC Circuits and Impedance: two parts)

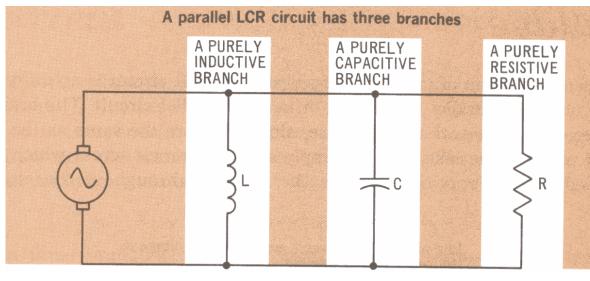
- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers much more material than this section)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
 - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
 - <u>Vector Math Tutorial</u> (Thanks to California Polytec at <u>atom.physics.calpoly.edu</u>)
- Alternating Current and Impedance
 - 5 on-line sessions plus one lab
- Resonance and Filters
 - 5 on-line sessions plus one lab

Section 4:

AC, Inductors and Capacitors

• OBJECTIVES: This section discusses AC voltage / current and their effects on parallel circuit components (resistors, inductors, transformers and capacitors). The concept of resonance and its use to produce filters is also described.

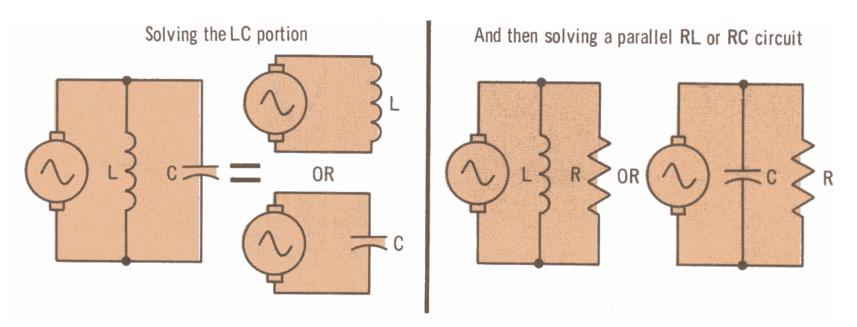
Section 4 Schedule:


Session 4a	-07/08	Parallel L-C Circuits	Text 4.114 – 4.122
		Parallel R-L-C Circuits (no class on 07/15 or 07/17)	Text 4.123 – 4.132
× ·		Parallel Resonance	Text 4.133 – 4.146
Session 4d (lab - 07/27, S		Tuning and Filters	Text 4.147 – 4.151
Session 4e (Quiz 4 due 0	- 07/29	Transformers and Impedance Matching	Text 4.152 – 4.160
Session 4f	- 08/12	Review (Discuss Quiz 4)	
	08/14	MT2 Review	
	08/17	MT2 – AC Circuits	

Session 3 (Parallel L-C) Review

- Capacitive reactance $X_C = 1/2\pi fC$ at -90°
- Inductive reactance $X_L = 2\pi f L$ at 90°
- Impedances in parallel add as inverses
 - Adding Vectors
 - Separately add their horizontal and vertical components
 - Graphically: head-to-tail or parallelogram
 - Here the vectors are in opposite directions; they just subtract.
 - Inductive reactance points up (90°)
 - Capacitive reactance points down (-90°)
 - Multiplying Vectors
 - Multiply their magnitudes (lengths)
 - Add their phases
 - Dividing Vectors
 - Divide their magnitudes (lengths)
 - Subtract their phases
- Ohm's and Kirchoff's laws still work with AC

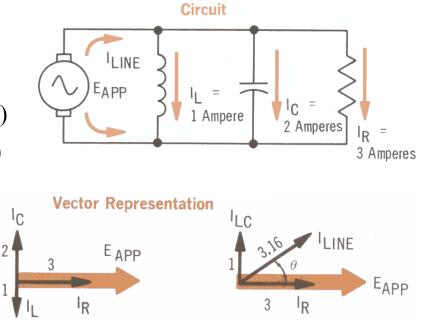
Parallel R-L-C Circuits


- Voltage (ref. phase) is the same across all parallel components
- Branch currents add (vectors) to produce I_{Line}
- Impedances in parallel add (vectors) as inverses

Basic Electricity

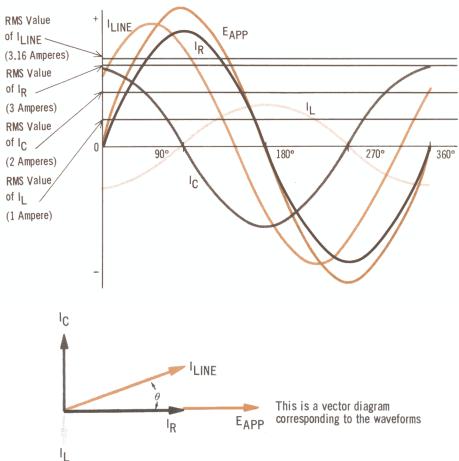
A Two-Step Solution

- Solve an RLC in two steps
 - Combine the L and C branches (both vertical)
 - Add the resistor branch to the result (as a vector)


Parallel RLC- Current

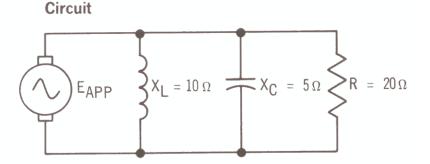
- AC currents always add as vectors
- Voltage (ref. Phase) is the same across all parallel components
- Inductor I_L points down (Lags voltage by 90°)
- Capacitor I_C points up (Leads voltage by 90°)
- Add I_L and I_C (they subtract) to get I_{Line}
 - $I_{L} = 1 \angle -90^{\circ} = -1 \angle 90^{\circ}$
 - $I_{\rm C} = 2 \angle 90^{\circ}$
 - $I_{LC} = (2-1) \angle 90^\circ = 1 \angle 90^\circ$ (capacitive circuit)
- Now add I_R

$$- |I_{Line}| = (1^2 + 3^2)^{\frac{1}{2}} = 10^{\frac{1}{2}} = 3.162$$


$$- \angle I_{\text{Line}} = \arctan(1/3) = 18.435^{\circ} = 0.322$$
 Radians

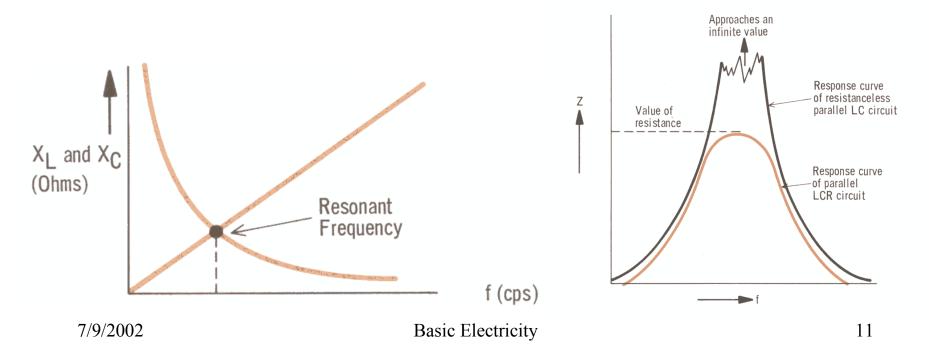
Parallel LC- Current Waveforms

- AC currents always add as vectors
- Voltage (ref. Phase) is the same across all parallel components
- Resistor current is in phase with the voltage
- Inductor I_L points down (Lags voltage by 90°)
- Capacitor I_C points up (Leads voltage by 90°)
- Line current I_{Line} has a phase between I_{LC} and I_{R}



7/9/2002

Basic Electricity


Parallel RLC - Impedance

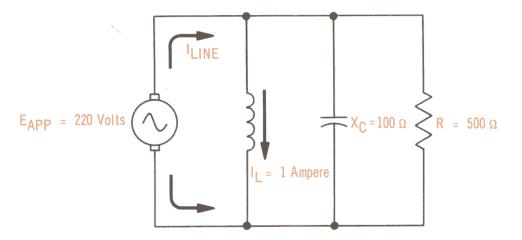
- Impedances in parallel add as inverse vectors
- X_L (up) and X_C (down) are in opposite directions
- First combine the L and C branches
 - $1/X_L = 1/(10\angle 90^\circ) = 0.1\angle -90^\circ$
 - $1/X_{C} = 1/(5\angle -90^{\circ}) = 0.2\angle 90^{\circ}$
 - $1/X_{LC} = 0.1 \angle 90^{\circ}$
- $1/R = 0.05 \angle 0^{\circ}$
- $|1/Z| = (0.05^2 + 0.1^2)^{\frac{1}{2}} = (0.0025 + 0.01)^{\frac{1}{2}}$ = $(0.0125)^{\frac{1}{2}} = 0.1118$
- $\angle 1/Z = \arctan(0.1/0.05) = 63.4^{\circ}$
- $Z = 9 \angle -63.4^{\circ}$ (capacitive)

The Effect of Frequency

- $Z_L = 2\pi f L$ (rises linearly with frequency)
- $Z_{\rm C} = 1/2\pi f L$ (decreases with frequency)
- Resonance is when they are equal and cancel; the impedance is then just the resistance

Example

- First find the Branch currents
 - $-I_{\rm C} = 220/100$ $= 2.2 \angle 90^{\circ}$

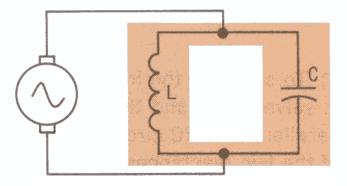

$$-I_{\rm R} = 220/500$$

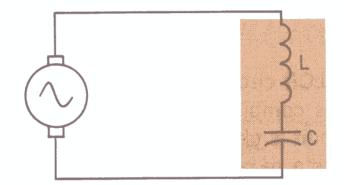
= 0.44\arrow0°

•
$$I_{LC} = (2.2-1) \angle 90^{\circ} = 1.2 \angle 90^{\circ}$$

- $|I_{\text{Line}}| = (0.44^2 + 1.2^2)^{\frac{1}{2}} = (0.1936 + 1.44)^{\frac{1}{2}}$ $= (1.6336)^{\frac{1}{2}} = 1.278$ amps
- $\angle I_{\text{Line}} = \arctan(1.2/0.44) = \arctan(2.72) = 69.9^{\circ}$ 7/9/2002

Example (continued)


- First find the Inductor reactance
 - $X_L = 220$ volts/1 amp = $220 \angle 90^\circ$ Ohms
- Now add the impedances as inverses



- $1/X_{LC} = 1/220\angle 90^{\circ} + 1/100\angle -90^{\circ}$ = $0.0045\angle 90^{\circ} + 0.01\angle -90^{\circ} = 0.0055\angle -90^{\circ}$
- $|1/X_t| = (0.0055^2 + 0.002^2)^{\frac{1}{2}} = (0.00003 + 0.000004)^{\frac{1}{2}}$ = $(0.000034)^{\frac{1}{2}} = 0.0058$ ($|X_t| = 172$ ohms, $I_{\text{line}} = 220/172 = 1.28$ amps)
- $\angle 1/X_t = \arctan(-0.0055/0.002) = \arctan(-2.75) = -70^{\circ}$ 7/9/2002 Basic Electricity

Resonance

- X_L and X_C cancel
- Parallel Resonance
 - High Impedance
 - Low line current(high current in the LC loop!)
- Series Resonance
 - Low impedance
 - High line current
- Resonant frequency $2\pi fL = 1/2\pi fC$ $f = 1/2\pi (LC)^{\frac{1}{2}}$

Basic Electricity

Section 4 Schedule:

Session 4a	-07/08	Parallel L-C Circuits	Text 4.114 – 4.122
Session 4b		ek) (no class on 07/15 or 07/17)	Text 4.123 – 4.132
	- 07/22		Text 4.132 – 4.146
Session 4d (lab - 07/27, S		Tuning and Filters	Text 4.147 – 4.151
(lab - 07/27, 5 Session 4e (Quiz 4 due 0	- 07/29	Transformers and Impedance Matching	Text 4.152 – 4.160
Session 4f	- 08/12	Review (Discuss Quiz 4)	
	08/14	MT2 Review	
	08/17	MT2 – AC Circuits	