Parallel Resonance

Session 4c for Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Module: Basic Electronics (AC Circuits and Impedance: two parts)

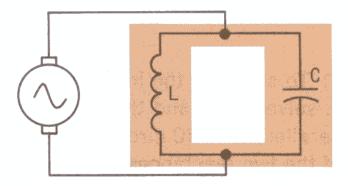
- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers much more material than this section)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
 - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
 - <u>Vector Math Tutorial</u> (Thanks to California Polytec at <u>atom.physics.calpoly.edu</u>)
- Alternating Current and Impedance
 - 5 on-line sessions plus one lab
- Resonance and Filters
 - 5 on-line sessions plus one lab

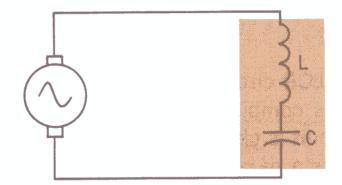
Section 4:

AC, Inductors and Capacitors

• OBJECTIVES: This section discusses AC voltage / current and their effects on parallel circuit components (resistors, inductors, transformers and capacitors). The concept of resonance and its use to produce filters is also described.

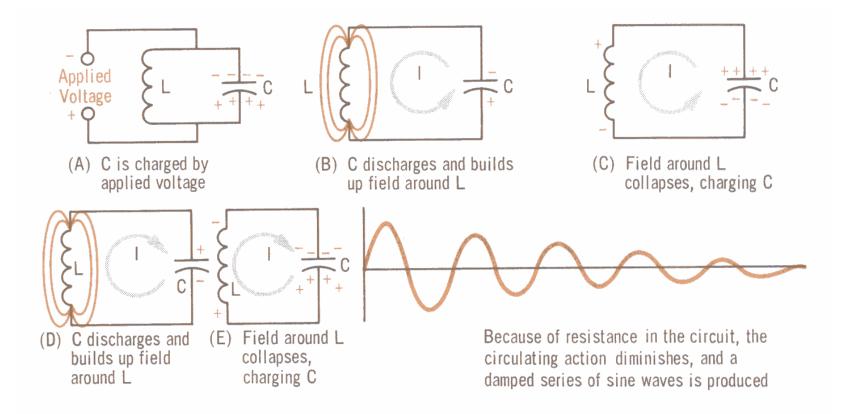
Section 4 Schedule:


Session 4a	-07/08	Parallel L-C Circuits	Text 4.114 – 4.122
		Parallel R-L-C Circuits (no class on 07/15 or 07/17)	Text 4.123 – 4.132
× ·	/	Parallel Resonance	Text 4.133 – 4.146
Session 4d (lab - Postpor		Tuning and Filters	Text 4.147 – 4.153
(lab - 1 ostpol Session 4e (Quiz 4 due 0	- 07/29	Transformers and Impedance Matching	Text 4.154 – 4.160
Session 4f	- 08/12	Review (Discuss Quiz 4)	
	08/14	MT2 Review	
	08/17	MT2 – AC Circuits	

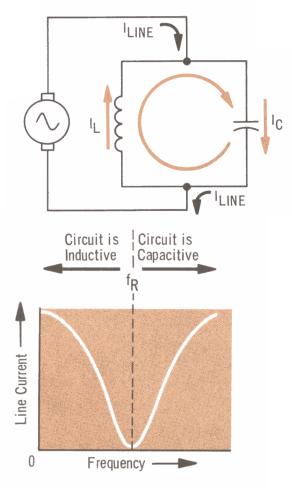

(Parallel R-L-C) Review

- Capacitive reactance $X_C = 1/2\pi fC$ at -90°
- Inductive reactance $X_L = 2\pi f L$ at 90°
- Impedances in parallel add as inverses
- Break the problem down into two simple problems
 - First combine the Inductive and Capacitive branches
 - Here the vectors are in opposite directions; they just subtract.
 - Inductive reactance points up (90°); the inverse points down
 - Capacitive reactance points down (-90°); the inverse points up
 - The larger of the two inverses dominates
 - Now add in the inverse of the resistive branch
 - Find the magnitude (lengths) by using the square root of the sum of squares
 - Find the phases as the angle who's tangent is the vertical / horizontal
- Now just invert again to get the total parallel impedance

Resonance

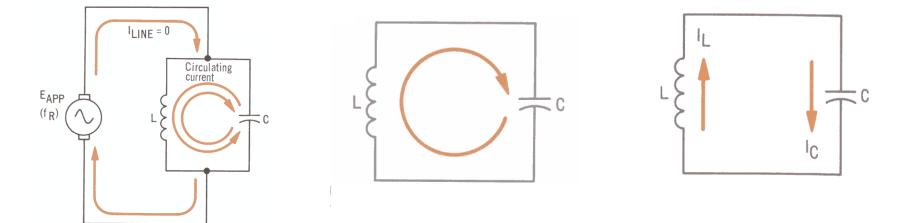

- X_L and X_C cancel
- Parallel Resonance
 - High Impedance
 - Low line current (high current in the LC loop!)
- Series Resonance
 - Low impedance
 - High line current
- Resonant frequency $2\pi fL = 1/2\pi fC$ $f = 1/2\pi (LC)^{\frac{1}{2}}$

The Tank Circuit

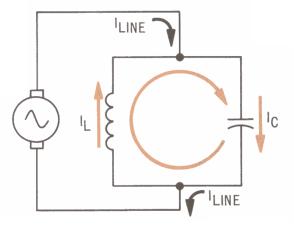

• A "tank" circuit "rings" like a bell

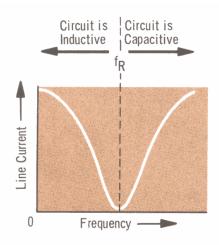
Current at Resonance

- At Resonance (for an Ideal parallel RC)
 - $-|I_L| = |I_C|$ but they are in opposition

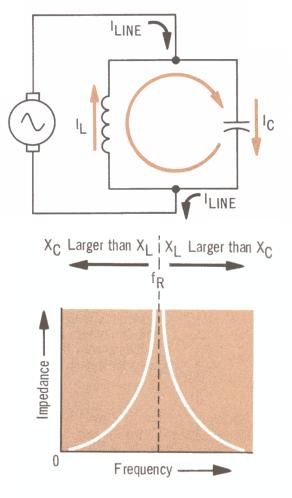

$$-I_{\text{Line}} = I_{\text{L}} + I_{\text{C}} = 0$$

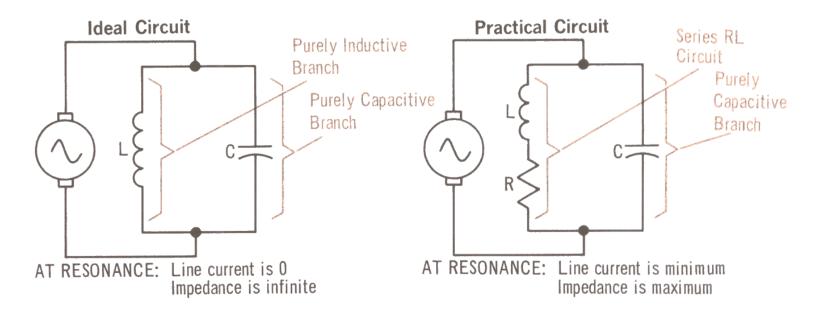
Impedance at Resonance


• At Resonance (for an Ideal parallel RC)


$$- |XL| = |XC| but they are in opposition- 1/Z = 1/XL + 1/XC = 1/∞Z is very large near resonance!$$

Line Current off Resonance


- If $|I_L| < |I_C|$ the line current is capacitive
- If $|I_L| > |I_C|$ the line current is inductive


Impedance off Resonance

- If $|X_L| > |X_C|$ the impedance is capacitive
- If $|X_L| < |X_C|$ the impedance is inductive
- Line Impedance $-1/Z = 1/X_L + 1/X_C$


Real Tank Circuits

• Inductors have a series resistance; not a parallel one

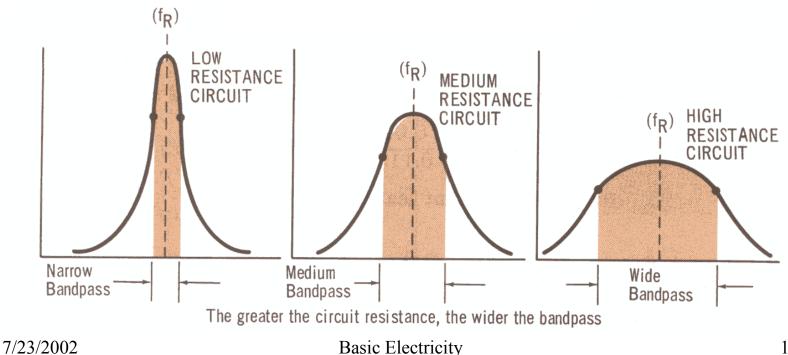
A Parallel RLC Example

• First invert the series RL $1/Z_1 = 1/(50\angle 0^\circ + 200\angle 90^\circ)$ $= 1/[(50^2 + 200^2)^{\frac{1}{2}}\angle \arctan(200/50)]$ $= 1/[(50^2 + 200^2)^{\frac{1}{2}}\angle \arctan(200/50)]$

13

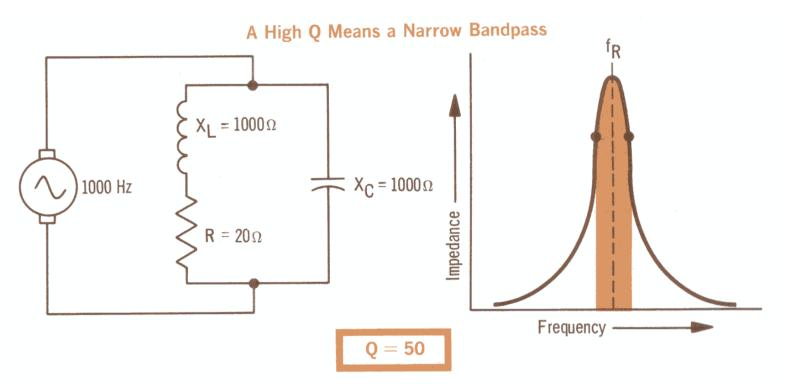
 $Z_{t} = 833 \angle -14.4^{\circ}$

 $= 1/(206.2\angle 76^{\circ})$


 $= 0.00485 \angle -76^{\circ}$

 $1/Z_2 = 1/(200\angle -90^\circ)$

- $1/Z_t = 0.00485 \angle -76^\circ + 0.005 \angle 90^\circ$
- $= .00485 * \cos(76) \angle 0^{\circ} + .00485 * \sin(-76) \angle 90^{\circ} + .005 \angle 90^{\circ}$
- $= 0.00117 \angle 0^{\circ} + 0.0003 \angle 90^{\circ} = 0.0012 \angle 14.4^{\circ}$


The Resonance Band

• Changing the Inductor's series resistance changes the "Bandwidth"

"Q"

• $Q = X_L / R = X_C / R$ at resonance

Changing Q

- Adding a parallel (shunt) resistor lowers Q
- More resistance in tank loop lowers Q

Section 4 Schedule:

Session 4a –	- 07/08	Parallel L-C Circuits	Text 4.114 – 4.122
		Parallel L-R-C Circuits (no class on 07/15 or 07/17)	Text 4.123 – 4.132
	,	Parallel Resonance	Text 4.132 – 4.146
		Tuning and Filters	Text 4.147 – 4.153
(lab - Postpone Session 4e (Quiz 4 due 08/	- 07/29	Transformers and Impedance Matching	Text 4.154 – 4.160
Session 9 starts	- 08/05	Business Writing	
Session 4f	-??	Review (Discuss Quiz 4)	
	??	MT2 Review	
7/23/2002	??	MT2 – AGaGid Forevitts ity	17