# Tuning and Filters

#### Session 4d for Basic Electricity A Fairfield University E-Course Powered by LearnLinc

# Module: Basic Electronics (AC Circuits and Impedance: two parts)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers much more material than this section)
- References:
  - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
  - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
  - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
  - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
  - <u>Vector Math Tutorial</u> (Thanks to California Polytec at <u>atom.physics.calpoly.edu</u>)
- Alternating Current and Impedance
  - 5 on-line sessions plus one lab
- Resonance and Filters
  - 5 on-line sessions plus one lab

# Section 4:

AC, Inductors and Capacitors

• OBJECTIVES: This section discusses AC voltage / current and their effects on parallel circuit components (resistors, inductors, transformers and capacitors). The concept of resonance and its use to produce filters is also described.

#### **Section 4 Schedule:**

| Session 4a                             | - 07/08          | Parallel L-C Circuits                  | Text 4.114 – 4.122 |
|----------------------------------------|------------------|----------------------------------------|--------------------|
| Session 4b $-07/10$ (break for a week) |                  | Parallel R-L-C Circuits                | Text 4.123 – 4.132 |
| Session 4c                             | - 07/22          | Parallel Resonance                     | Text 4.133 – 4.146 |
| Session 4d<br>(lab - Postpo            | – 07/24<br>ned)  | <b>Tuning and Filters</b>              | Text 4.147 – 4.153 |
| Session 4e<br>(Quiz 4 due 0            | - 07/29<br>8/12) | Transformers and Impedance<br>Matching | Text 4.154 – 4.160 |
| Session 4f                             | -08/12           | Review (Discuss Quiz 4)                |                    |
|                                        | 08/14            | MT2 Review                             |                    |
|                                        | 08/17            | MT2 – AC Circuits                      |                    |
|                                        |                  |                                        |                    |

# Parallel Resonance Review

- Capacitive reactance  $X_C = 1/(2\pi fC)$  at -90°
- Inductive reactance  $X_L = 2\pi f L$  at 90°
- Impedances in parallel add as inverses
- $X_L$  and  $X_C$  cancel
- Parallel Resonance
  - High Impedance
  - Low line current (high current in the LC loop!)
- Series Resonance
  - Low impedance
  - High line current
- Resonant frequency
  - $2\pi fL = 1/(2\pi fC)$
  - $f = 1/2\pi (LC)^{\frac{1}{2}}$

# Series and Parallel Resonance

Same resonant frequency Equal reactance Opposite impedances High Series current

|                                         | PROPERTIES                            | AT RESONAN           | CE                                        |                       |
|-----------------------------------------|---------------------------------------|----------------------|-------------------------------------------|-----------------------|
|                                         | Se<br>Resonar                         | ries<br>nt Circuit   | Par<br>Resonar                            | allel<br>nt Circuit   |
| Resonant<br>Frequency (f <sub>R</sub> ) | $\frac{1}{2\pi \sqrt{LC}}$            |                      | $\frac{1}{2\pi \sqrt{\text{LC}}}$         |                       |
| Reactances                              | $X_{\rm L} = X_{\rm C}$               |                      | $X_{L} = X_{C}$                           |                       |
| Impedance                               | Minimum; Z = R                        |                      | Maximum; $Z = QX_L$                       |                       |
| Current<br>(ITOT or ILINE)              | Махітит; Ітот                         |                      | Minimum; ILINE                            |                       |
| Q, Quality                              | $E_{\rm L}/E_{\rm APP} = X_{\rm L}/R$ |                      | $I_{\rm TANK}/I_{\rm LINE} = X_{\rm L}/R$ |                       |
| Bandwidth                               | f <sub>R</sub> /Q                     |                      | f <sub>R</sub> /Q                         |                       |
|                                         | PROPERTIES                            | OFF RESONAN          | CE                                        |                       |
|                                         | Series<br>Resonant Circuit            |                      | Parallel<br>Resonant Circuit              |                       |
|                                         | Above f <sub>R</sub>                  | Below f <sub>R</sub> | Above f <sub>R</sub>                      | $Belowf_{\mathbf{R}}$ |
|                                         |                                       |                      |                                           | V S V                 |

| 이 가지에 가지 않는 것이 있는 것이 가지 않는다.<br>같은 것이 가지 않는 것이 있는 것이 가지 않는다.                         | Resonant Circuit        |                         | Resonant Circuit        |                         |
|--------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                                                                      | Above f <sub>R</sub>    | Below f <sub>R</sub>    | Above $f_{\rm R}$       | $Belowf_{\mathrm{R}}$   |
| Reactances                                                                           | $X_{\rm L} > X_{\rm C}$ | $X_{\rm C} > X_{\rm L}$ | $X_{\rm L} > X_{\rm C}$ | $X_{\rm C} > X_{\rm L}$ |
| mpedance                                                                             | Increases               | Increases               | Decreases               | Decreases               |
| Phase Angle<br>Between E <sub>APP</sub><br>and I <sub>TOT</sub> or I <sub>LINE</sub> | I lags E                | I leads E               | I leads E               | I lags E                |
| nductive or<br>Capacitive Circuit                                                    | Inductive               | Capacitive              | Capacitive              | Inductive               |

# Tuning

- $f_r = 1/2\pi (LC)^{\frac{1}{2}}$
- Increasing L or C decreases f<sub>r</sub>
- Decreasing L or C increases f<sub>r</sub>
- A "tuned" resonance can be used to "select" which signal you want to pass or reject



If variable capacitors or inductors are used in resonant circuits, the resonance point and bandpass frequencies can be changed to a variety of frequencies by a simple adjustment.

### Low-Pass Filters

• A "filter" can be designed to "pass" lowfrequency signals while blocking high frequency signals.



### An RC Low Pass

- $|V_{out}| = |V_{in}| / [X_C / (R^2 + X_C^2)^{\frac{1}{2}}]$
- At very low frequencies
  R << X<sub>C</sub> little effect on signal
- At high frequencies
  - $R >> X_C$  output significantly reduced



# High-Pass Filters

• A "filter" can be designed to "pass" high frequency signals while blocking low frequency signals.



#### Band Pass Filters

• Here a high "shunt" impedance and/or a low series impedance is tuned to be in the middle of the "pass" band.



# Band Reject Filters

• In a band reject (or band stop) filter a high series impedance and/or a low shunt impedance is tune to the reject band



### **T-Networks**

- T networks are symmetric
- Equal elements in both series branches



#### **PI-Networks**

- Again each is symmetrical
- Shunt branches are equal



#### **Section 4 Schedule:**

| Session 4a                              | -07/08    | Parallel L-C Circuits                              | Text 4.114 – 4.122   |
|-----------------------------------------|-----------|----------------------------------------------------|----------------------|
| Session 4b $-07/10$                     |           | Parallel L-R-C Circuits                            | Text 4.123 – 4.132   |
| (break for a week) Session $Ac = 07/22$ |           | (no class on 0//15 or 0//1/)<br>Parallel Resonance | Text $4 132 - 4 146$ |
| 56551011 46                             | 01122     | T draher Resonance                                 | TCAT 7.152 7.170     |
| Session 4d                              | -07/24    | Tuning and Filters                                 | Text 4.147 – 4.153   |
| (lab - Postpor                          | ned)      |                                                    |                      |
| Session 4e                              | - 07/29   | Transformers and Impedance                         | Text 4.154 – 4.160   |
| (Quiz 4 due $0$                         | 8/12)     | Matching                                           |                      |
| Session 9 start                         | s - 08/05 | Business Writing                                   |                      |
| Session 4f                              | -??       | Review (Discuss Quiz 4)                            |                      |
|                                         | ??        | MT2 Review                                         |                      |
| 7/23/2002                               | ??        | MT2 – AGaGiercaritesity                            | 15                   |

#### Q and A