Session 4 Review

Session 4f of Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Section 4 Schedule:

Session 4a	-07/08	Parallel L-C Circuits	Text 4.114 – 4.122
Session 4b	-07/10	Parallel R-L-C Circuits	Text 4.123 – 4.132
(break for a w Session 4c	-07/22	(no class on 07/15 or 07/17) Parallel Resonance	Text 4.133 – 4.146
Session 4d	-07/24	Tuning and Filters	Text 4.147 – 4.153
Session 4e	- 07/29	Resonant Transformers and Impedance Matching	Text 4.154 – 4.160
Oops, no class	s - 08/5-7		
Session 4f	- 08/12	Section 4 Review	
(Quiz 4 due 0	8/17)		
	08/17	Section 4 Lab	
Session 4g	- 08/19	Quiz 4 Review	
	-08/21	MT 2 Review	
8/11/2002		Basic Electricity	2

Session 3 (Parallel L-C) Review

- Capacitive reactance $X_C = 1/2\pi fC$ at -90°
- Inductive reactance $X_L = 2\pi f L$ at 90°
- Impedances in parallel add as inverses
 - Adding Vectors
 - Separately add their horizontal and vertical components
 - Graphically: head-to-tail or parallelogram
 - Here the vectors are in opposite directions; they just subtract.
 - Inductive reactance points up (90°)
 - Capacitive reactance points down (-90°)
 - Multiplying Vectors
 - Multiply their magnitudes (lengths)
 - Add their phases
 - Dividing Vectors
 - Divide their magnitudes (lengths)
 - Subtract their phases
- Ohm's and Kirchoff's laws still work with AC

(Parallel R-L-C) Review

- Capacitive reactance $X_C = 1/2\pi fC$ at -90°
- Inductive reactance $X_L = 2\pi f L$ at 90°
- Impedances in parallel add as inverses
- Break the problem down into two simple problems
 - First combine the Inductive and Capacitive branches
 - Here the vectors are in opposite directions; they just subtract.
 - Inductive reactance points up (90°); the inverse points down
 - Capacitive reactance points down (-90°); the inverse points up
 - The larger of the two inverses dominates
 - Now add in the inverse of the resistive branch
 - Find the magnitude (lengths) by using the square root of the sum of squares
 - Find the phases as the angle who's tangent is the vertical / horizontal
- Now just invert again to get the total parallel impedance

A Parallel RLC Example

• First invert the series RL $1/Z_1 = 1/(50\angle 0^\circ + 200\angle 90^\circ)$ $= 1/[(50^2 + 200^2)^{\frac{1}{2}}\angle \arctan(200/50)]$ $= 1/[(50^2 + 200^2)^{\frac{1}{2}}\angle \arctan(200/50)]$

5

 $Z_{t} = 833 \angle -14.4^{\circ}$

 $= 1/(206.2\angle 76^{\circ})$

 $= 0.00485 \angle -76^{\circ}$

 $1/Z_2 = 1/(200\angle -90^\circ)$

- $1/Z_t = 0.00485 \angle -76^\circ + 0.005 \angle 90^\circ$
- $= .00485 * \cos(76) \angle 0^{\circ} + .00485 * \sin(-76) \angle 90^{\circ} + .005 \angle 90^{\circ}$
- $= 0.00117 \angle 0^{\circ} + 0.0003 \angle 90^{\circ} = 0.0012 \angle 14.4^{\circ}$

8/11/2002

Basic Electricity

Parallel Resonance Review

- Capacitive reactance $X_C = 1/(2\pi fC)$ at -90°
- Inductive reactance $X_L = 2\pi f L$ at 90°
- Impedances in parallel add as inverses
- X_L and X_C cancel
- Parallel Resonance
 - High Impedance
 - Low line current (high current in the LC loop!)
- Series Resonance
 - Low impedance
 - High line current
- Resonant frequency
 - $2\pi fL = 1/(2\pi fC)$
 - $f = 1/2\pi (LC)^{\frac{1}{2}}$

Tuning and Filters Review

- Tuning
 - $f_r = 1/2\pi (LC)^{\frac{1}{2}}$
 - Increasing L or C decreases f_r
 - Decreasing L or C increases f_r
- Filters
 - Low-Pass
 - High-Pass
 - Band-Pass
 - Band-Reject
- T and π Filter circuits

If variable capacitors or inductors are used in resonant circuits, the resonance point and bandpass frequencies can be changed to a variety of frequencies by a simple adjustment.

Basic Electricity

Resonant Transformer Review

- Transformers
 - Low Load: Inductive currents
 - High Load: Phase determined by the load impedance
- Resonant Transformer
 - Secondary is a **Series** resonant circuit
- Impedance Matching
 - Maximum power transfer: $Z_L = Z_S^*$
 - The turns ratio affects the "reflected" impedances.
 - $Z_P/Z_S = (N_P/N_S)^2$
 - A Transformer can then be used to "match" dissimilar impedances (resistive) for good power transfer.

Section 4 Schedule:

Session 4a	-07/08	Parallel L-C Circuits	Text 4.114 – 4.122
Session 4b	-07/10	Parallel R-L-C Circuits	Text 4.123 – 4.132
(break for a v Session 4c	week) - 07/22	(no class on 0//15 or 0//1/) Parallel Resonance	Text 4.133 – 4.146
Session 4d	-07/24	Tuning and Filters	Text 4.147 – 4.153
Session 4e	- 07/29	Resonant Transformers and Impedance Matching	Text 4.154 – 4.160
Oops, no clas	s - 08/5-7		
Session 4f	-08/12	Section 4 Review	
(Quiz 4 due ()8/17)		
	- 08/17	Section 4 Lab	
Session 4g	- 08/19	Quiz 4 Review	
	-08/21	MT 2 Review	
8/11/2002		Basic Electricity	9