Basic Math: Algebra

Math Session for Students in "Basic Electricity" A Fairfield University E-Course Powered by LearnLinc

Basic Math

- **Text**: "Basic Mathematics," Marvin Bittinger, Addison Wesley, 1999, Edition 8, ISBN 0-201-95958-5
- References:
 - "MathMax," Multimedia CD-ROM for the text
 - http://library.thinkquest.org/10030/algecon.htm

Basic Math	Thinkquest	
1 & 2 & more	1	
3 & 4 & more	2	
11	3	
7	6	

Chapter 11: Algebra

- **OBJECTIVES**: This session is Algebra simplified
 - 11.1 Introduction
 - 11.2 Solving Equations: addition
 - 11.3 Solving Equations: multiplication
 - 11.4 addition and multiplication together
 - 11.5 Applied Problems
 - *** Some Circuit Equations
 - *** Polynomials (FOIL)

Algebraic Order Remember

- In mixed operations follow the algebraic order:
 - Multiply/divide
 - Add/subtract
- Alternately, use parenthesis to make things clear

$$\frac{2}{3} * 24 - 11\frac{1}{2} = 16 - 11\frac{1}{2} = 15\frac{2}{2} - 11\frac{1}{2} = 4\frac{1}{2}$$

Introduction to Algebra

• We use variables (named "place holders") in equations so that our work can be applied to several problems. We just replace the variables with numbers later to get a numerical answer.

• Example
$$X_L = 2^* \pi^* f^* L$$

 π is 3.14159, f is the frequency and L is the inductance

We can solve for any of the placeholders and get a new equation: f = X_L / 2*π* L
 (I used the multiplication rule)

More Introduction

- Distributive Law $a^{*}(b+c) = ab + bc \quad 5^{*}(3+4) = 35 = 5^{*}3+5^{*}4$
- Associative Law $a^{*}(b^{*}c) = (a^{*}b)^{*}c$ $5^{*}(3^{*}4) = 60 = (5^{*}3)^{*}4$
- Commutative Law a*b = b*a
- Factoring
 ab + ac = a*(b + c) opposite of distribution

Simplifying Expressions

• "Collect" similar terms factor and reduce These are all equivalent expressions 23 + 5*t + 7*y - t - y - 27 (23 - 27) + (5 - 1)*t + (7 - 1)*y -4 + 4*t + 6*y4*(t - 1) + 6*y

FOIL

- Polynomial

 a*x + b
 a*x² + b*x + c
 second order (quadratic)
- (a + b)*(c + d) a*(c + d) + b*(c + d) a*c + a*d + b*c + b*d
- Foil (a shortcut)
 First a*c; outer a*d; inner b*c; last b*d

The Addition Principle

- You can add (or subtract) the same number (expression) to both sides of an equation and it is still true.
 - a = b adding c to both sides a + c = b + c is still true
- Example r + 1/3 = 8/3 subtract 1/3 from both sides r + 1/3 - 1/3 = 8/3 - 1/3 or r = 7/3 = 2.33333

The Multiplication Principle

- You can multiply (or divide, but not by zero) both sides of an equation by the same number (expression) and the equation is still true.
 a = b multiplying both sides by c
 a * c = b * c is still true
- Example
 - -15x = 105 divide both sides by (-15)
 - x = -105/15
 - x = -7

Combinations

-7x - 24 = -129 add 24 to both sides -7x = -129 + 24 -7x = -105 divide both sides by (-7) x = -105/(-7)x = 15

Word Problems

Add	Subtract	Multiply	Divide
add	subtract	multiply	divide
sum	difference	product	quotient
plus	minus	times	divided by
more than	Less than	of	ratio
Increased by	Decreased by		
	Take from		

Steps

- 1. Get to know the problem (think)
- 2. Translate the words to an equation
- 3. Solve the equation
- 4. Check your answer is it reasonable?
- 5. State the answer clearly include units

An MT2 Example

• Find the resonant frequency: the resonant frequency is that frequency for which the inductive reactance equals the capacitive reactance and they cancel.

$$\begin{aligned} X_L &= 2^* \pi^* f^* L = X_C = 1/(2^* \pi^* f^* C) \\ & \text{Multiply both sides by f and} \\ & \text{divide both sides by } (2^* \pi^* L) \\ f^2 &= 1/(2^* \pi)^{2*} L^* C) \text{ now take the square root and} \\ & f &= 1/\left[2^* \pi^* (L^* C)^{\frac{1}{2}} \right] \end{aligned}$$

Interim Schedule:

MT2 QA -08/26 MT2 Review continues

Math Review – 08/28 Algebra

No Class -09/02 Vacation

-09/04 MT2 AM & PM

- 09/06 MT2 PM

-09/09 MT2 results session

 - 09/11 Section 5 Begins "Electronics" Web Tutorials
 http://library.thinkquest.org/10030/algecon.htm
 http://www.play-hookey.com/semiconductors/
 8/28/2002 Basic Electricity Start reading Electronics text

Math Chapter 11

Algebra Electronics