FM Radio

A Session for "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Module: Communication Systems (in two parts)

- Texts:
 - "Understanding Telephone Electronics," Bigelow, Newnes, 1997, ISBN 0-7506-9944
- References:
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
- Part 11 Broadcast Systems
 - 5 on-line sessions plus one lab
- Part 12 Transmission & Communications
 - 5 on-line sessions plus one lab
- Mastery Test part 6 follows this Module

Section 11: Broadcast Systems

- Frequency Division Multiplexing
- AM
 - Modulation
 - Demodulation (The Envelope Detector)
- FM
 - Modulation
 - Demodulation (The Phase-Locked-Loop)
- Superhetrodyne receivers
- Television
- Sampling

Section 12: Transmission and Networks

- Transmission Lines
 - Twisted pair
 - Coaxial Cable
 - Optical Fiber
- Microwave Systems
- Satellite Links
- Telephone Systems
- Local Area Networks
- Cellular Phone Systems

Section 11 Schedule

Session 11a	08/25	Time and Frequency Multiplexing	Notes and Web Sites Bigelow: 167-206
Session 11b	08/27	AM Radio	Notes and Web Sites
Session 11c (Labor Day 09/01)	09/03	FM Radio	Notes and Web Sites
Session 11d	09/08	Transmitters & Receivers	Notes and Web Sites
Session 11e (Lab - 09/13, Sat.)	09/10	Television	Notes and Web Sites
Session 11f (Quiz 11 by 09/21)	09/15	Review for Quiz 11	
Session 11g	09/22	Quiz 11 Results	

Frequency Division Multiplexing

- Here the Bandwidth of the Transmission medium is divided into "Channels" each with enough bandwidth to carry the desired information
- All Channels are separated by an narrow, unused space in the spectrum called a "Guard Band"
- AM Radio: The RF spectrum from 535 kHz to 1605 kHz is divided into overlapping 20 kHz channels (none overlap in a region)
- FM Radio: the RF spectrum from 88 MHz to 108 MHz is divided into 200 kHz channels (double-width for stereo)
- Broadcast TV: The RF Spectrum from 52 MHz to 88 MHz, 174 MHz to 216 MHz, and 470 MHz to 806 MHz is divided into 6 MHZ channels

AM Facts

- AM audio has a maximum frequency of less than 10 kHz •
- An AM radio channel needs ~18 kHz bandwidth
 - Two sidebands
 - Upper from fc+fmin to fc+fmax (fc+fm simple tone)
 - Lower from fc-fmin to fc-fmax (fc-fm simple tone)
 - channel spacing in each geographical region is 20 kHz
- The AM Radio band is from 535 kHz to 1605 kHz
- Carrier amplitude varies in proportion to the audio signal
- AM transmitters average about 70%● modulation
 - avoid over modulation
 - The carrier amplitude cannot go to zero or the spectrum gets very broad and interferes with other channels

carrier (m=0.5)

carrier (m=1.0)

AM Demodulation

- Two methods for AM demodulation
 - Mixing (multiplying by) a reproduced carrier wave
 - Requires locally generating a sine wave at the same frequency and in phase with the signal.
 - Then pass the result through a low-pass filter to get the audio
 - Envelope Detection (used in almost all AM receivers)
 - Use a diode and a RC filter to "follow" the envelope of the AM signal (which is the audio)

Frequency Modulation

- Carrier Frequency varies in proportion to the audio signal (Use a VCO -Voltage Controlled Oscillator)
- FM Bandwidth:
 - Two Factors
 - Maximum Deviation ($\Delta f = 75$ KHz) Sweeps out a spectral region
 - Maximum Modulating Frequency (fm =15 KHz Monaural or 53 KHz Stereo) Creates sidebands (just like AM)
 - Carson's Rule BW ~ $2*(\Delta f + fm)$
 - Monaural BW ~ 2*(75 + 15) = 180 KHz Allocated a 200 KHz channel
 - Stereo BW $\sim 2*(75 + 53) = 256$ KHz Allocated a 400 KHz channel

Demodulating FM

- Limiter
 - An FM signal has no Amplitude variation (any that is there is either from noise or interference)
 - Amplify the signal and put it through a Limiter (Clipper – creates an almost square wave) to remove any AM
 - Filter out the created harmonics (odd multiples of the carrier in the square wave) to get back a clean FM Modulated Sine Wave
- Detector
 - Use the slope of a filter to create AM that is proportional to the FM and use an envelope detector (Ratio Detector, Discriminator)
 - Count zero crossings per second
 - Use a Phase-Locked-Loop (PLL) to track the time-varying carrier

The Phase-Locked-Loop

- A PLL has three primary components
 - Phase Comparator: outputs a voltage proportional to the phase difference between two sine waves
 - VCO (Voltage-Controlled-Oscillator): A sine wave generator whose frequency increases (or decreases) when an input voltage increases (or decreases ... zero input \rightarrow fc)
 - Low-Pass (loop) Filter : Lets DC and Audio through but filters out any high frequency components
- The PLL locks onto the carrier and tracks the frequency variation. The voltage into the VCO is the original audio

FM Facts

- Carrier Frequency varies in proportion to the audio signal
- FM audio has a maximum frequency of less than 15 kHz
- An FM radio channel needs extra bandwidth
 - Monaural: 200 KHz
 - Stereo: 400 KHz
- The FM Radio band is from 88 MHz to 108 MHz (in the middle of the VHF TV Band, between channels 6 and 7)

- The FM Modulation Index is the ratio $k = \Delta f / fm$
 - Narrow Band FM (k < 1) BW approaches AM
 - Wide Band FM (k > 1, broadcast FM is Wide-Band) has good noise immunity
- FM Demodulators include:
 - Limiters followed by one of: Ratio Detector, Discriminator, or Zero Counter
 - Phase-Locked-Loop PLL

Broadcast Systems

Section 11 Schedule

Session 11a	08/25	Time and Frequency Multiplexing	Notes and Web Sites Bigelow: 167-206
Session 11b	08/27	AM Radio	Notes and Web Sites
Session 11c (Labor Day 09/01)	09/03	FM Radio	Notes and Web Sites
Session 11d	09/08	Transmitters & Receivers	Notes and Web Sites
Session 11e (Lab - 09/13, Sat.)	09/10	Television	Notes and Web Sites
Session 11f (Quiz 11 by 09/21)	09/15	Review for Quiz 11	
Session 11g	09/22	Quiz 11 Results	