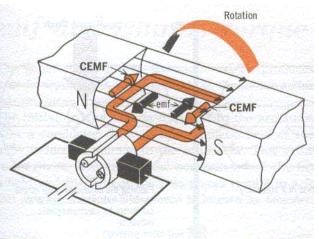
Levers, Gears, Torque, Horsepower

Part 14c of "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

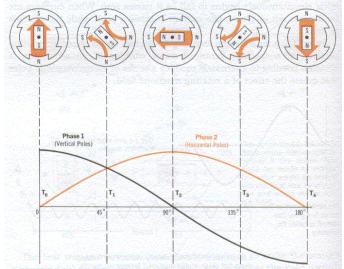
Section 14 Schedule

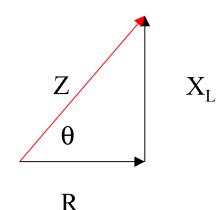

Session 14a	11/19	Intro to Applied Technical Mathematics	Notes: Binary/Octal/Hex, Powers of 10, Basic Algebra
Session 14b	11/24	DC & AC Motors	Elect1-7: pp. 7-39: 7-69, pp. 7-89: 7-117
Session 14c	11/26	Levers/gears, Torque/HP/RPM	Notes
Quiz 14 Review (Quiz 14 due 12/07)	12/01		
Quiz 14 Results	12/08		
MT8 (Sat,Cheshire)	12/13		
MT8 Results	12/15		

Section 14: Applied Technical Mathematics

- Math review
 - Binary numbers (Hex and Octal)
 - Powers of ten
 - Working with equations
- DC & AC Motors and Generators
 - Simple relationships and vocabulary
- Levers and Gears
 - Relating linear force and motion to rotational torque and motion
 - $F=M*A vs T=J*\alpha$
- Torque, RPM and Horsepower
 - Simple relationships and vocabulary

Last Time – 1: DC Motors/Generators

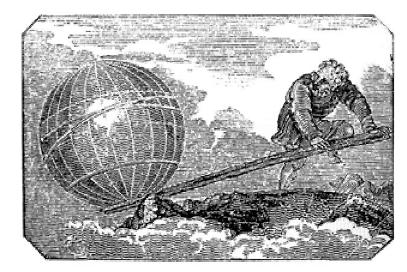

- Electro Motive Force (Voltage)
 - Applied EMF (armature battery voltage)
 - Counter EMF (Generated armature voltage)
- DC Motor / Generator (Which one depends on power flow direction)
 - Operation
 - Armature spins in a magnetic field
 - Armature current causes rotational force (Motor action due to Applied EMF)



- Rotation creates Counter EMF (CEMF Generator Action)
- DC Motor Facts
 - Steady-State Speed is approximately proportional to Applied EMF
 - Steady-State Armature current is whatever is required to provide the Power (736 Watts = one Horsepower) needed to turn the load at the Steady-State speed
 - There is a high starting current (locked rotor \Rightarrow overload
 - If the magnetic field strength is increased, the CEMF increases and the motor slows down

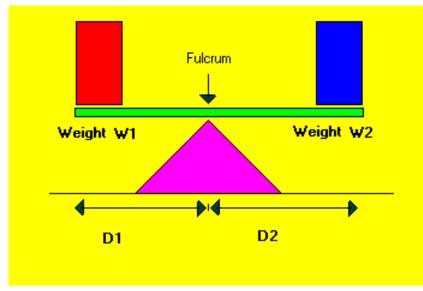
Last Time – 2: AC Motors

- Rotating Field
 - Armature tries to stay aligned with the field
 - Armature aligns with field
- Characteristics
 - Guarantees rotational direction
 - Speed determined by frequency and the number of poles
- Coils (Armature and Field)
 - Resistance (R)
 - Inductance ($X_L = 2\pi fL$)
- Impedance $(Z = \vec{R} + \vec{X}_L)$
 - Length: $|Z| = SQRT(R^2 + X_L^2)$
 - Angle: $\theta = ARCTAN(X_L/R)$


11/25/2003

Last Time – 3: Equations

- EMF = I * R (Ohms Law)
- $X_L = 2^*\pi^*L$ (Inductive reactance, remember vectors)
- Power = I * V (in Watts, I & V are RMS values) (1 HP = 736 Watts)
- $cemf=V_{total}-(Ia*Ra)-(I_{field}*R_{field})$ (just Kirchoff, armature winding & field winding in series, same current in both windings)
- T=(hp)(5252)/Na (Na=rev/min, T in ft-lbs)
- Nm=(T)*1Nm/0.73756 lb-ft (Nm =Newton-meter)
- Kemf=cemf/(Ifield*Na) the generator constant
- Hp=(lb-ft)*(rev/min)/5252
- Synchronous speed=120*frequency/no. of poles


Levers and Torque

- $F^{1*}D^1 = F^{2*}D^2 = Torque$
- Torque units
 - Foot-Lbs
 - Newton-Meters
- Rotational acceleration
 - $-T = J * \alpha$
 - J is "moment of inertia"
 - $-\alpha$ is "angular acceleration"

 $\Delta O\Sigma \ MOI \ \Pi OY \quad \Sigma T\Omega \ \ KAI \quad KIN\Omega \ \ THN \ \Gamma HN \\ Give me where [to] stand and [I will] move the earth \\$

Archimedes 340 AD

Gears

- Operation
 - Gears are mechanical transformers
 - $RPM_1 * R_1 = RPM_2 * R_2$
 - $T_1/R_1 = T_2/R_2$
 - You can use the number of teeth instead of the radius
- Belts and Pulleys work the same way as gears

Equations again

- EMF = I * R (Ohms Law)
- $X_L = 2^* \pi^* L$ (Inductive reactance, remember vectors)
- Power = I * V (in Watts, I & V are RMS values) (1 HP = 736 Watts)
- $cemf=V_{total}-(Ia*Ra)-(I_{field}*R_{field})$ (just Kirchoff, armature winding & field winding in series, same current in both windings)
- T=(hp)(5252)/Na (Na=rev/min, T in ft-lbs)
- Nm=(T)*1Nm/0.73756 lb-ft (Nm =Newton-meter)
- Kemf=cemf/(Ifield*Na) the generator constant
- Hp=(lb-ft)*(rev/min)/5252
- Synchronous speed=120*frequency/no. of poles

Practice problem

A 24 volt, $\frac{1}{2}$ HP, series connected, 1800 RPM, DC motor uses 20 amps at its rated output.

(This is all stated on the motor "Nameplate")

- What is the CEMF if Ra=0.1 and Rf = 0.2

cemf=Vtotal-(Ia*Ra)-(Ifield*Rfield) cemf=24 - (20*0.1) - (20*0.2)cemf=24 - 2 - 4 = 18 volts

– What is the Kemf for this motor?

Kemf=cemf/(Ifield*Na) Kemf=18/(20*1800) = $1/2000 = 0.0005 = 0.5*10^{-3}$

- Find the Motor Efficiency and Torque
 - Power in = V * I = 24 * 20 = 480
 - Power out = 0.5 HP = 0.5 * 736 (W/HP) = 368 Watts
 - Efficiency = 368/480 = **0.77 or 77%**
 - Torque = HP*5252/Na = 0.5*5252/1800 = 1.46 ft-lbs
 - Torque = 1.46/0.73756 = **1.98 newton-meters**

Section 14 Schedule

Session 14a	11/19	Intro to Applied Technical Mathematics	Notes: Binary/Octal/Hex, Powers of 10, Basic Algebra
Session 14b	11/24	DC & AC Motors	Elect1-7: pp. 7-39: 7-69, pp. 7-89: 7-117
Session 14c	11/26	Levers/gears, Torque/HP/RPM	
Quiz 14 Review (Quiz 14 due 12/07)	12/01		
Quiz 14 Results	12/08		
MT8 (Sat, Cheshire)	12/13		
MT8 Results	12/15		