Review for Quiz 14

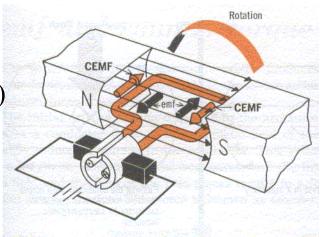
Part 14d of
"Communications"

A Fairfield University E-Course
Powered by LearnLinc

Section 14 Schedule

Session 14a	11/19	Intro to Applied Technical Mathematics	Notes: Binary/Octal/Hex, Powers of 10, Basic Algebra
Session 14b	11/24	DC & AC Motors	Elect1-7: pp. 7-39: 7-69, pp. 7-89: 7-117
Session 14c	11/26	Levers/gears, Torque/HP/RPM	Notes
Quiz 14 Review (Quiz 14 due 12/07)	12/01		Notes
Quiz 14 Results	12/08		
MT8 (Sat,Cheshire)	12/13		
MT8 Results	12/15		

Section 14: Applied Technical Mathematics

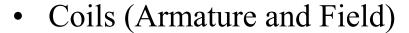

- Math review
 - Binary numbers (Hex and Octal)
 - Powers of ten
 - Working with equations
- DC & AC Motors and Generators
 - Simple relationships and vocabulary
- Levers and Gears
 - Relating linear force and motion to rotational torque and motion
 - $F=M*A vs T=J*\alpha$
- Torque, RPM and Horsepower
 - Simple relationships and vocabulary

Math Review

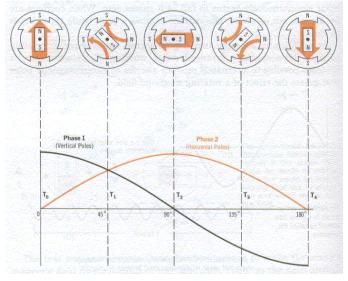
- Number Systems
 - Binary (powers of 2 **011011010011**)
 - Octal (3 bits at a time, powers of 8 3323)
 - Decimal (powers of 10 1747)
 - Hexadecimal (4 bits at a time, Powers of 16 6D3)
- Scientific Notation (1.5*10³, 15*10⁻⁶)
- Solving Equations (Maintain equality)
 - Add (or subtract) the same number to both sides
 - Multiply (or divide) both sides by the same number (except zero)
 - Square (or take the square root of) both sides
 - Use the same function on both side (sine, arccos, log ...)
- Multiple Equations (N equations, N unknowns)
- Polynomials
 - Foiling (First, Outer, Inner, Last) $(x-3)*(x+3) = x^2+3x-3x-9 = x^2-9$
 - UnFoiling (Factoring)

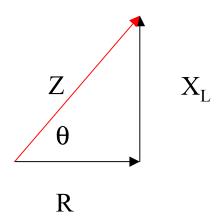
DC Motor/Generator Review

- Electro Motive Force (Voltage)
 - Applied EMF (armature battery voltage)
 - Counter EMF (Generated armature voltage)
- DC Motor / Generator (Which one depends on power flow direction)
 - Operation
 - Armature spins in a magnetic field
 - Armature current causes rotational force (Motor action due to Applied EMF)
 - Rotation creates Counter EMF (CEMF Generator Action)
 - DC Motor Facts
 - Steady-State Speed is approximately proportional to Applied EMF
 - Steady-State Armature current is whatever is required to provide the Power (736 Watts = one Horsepower) needed to turn the load at the Steady-State speed
 - There is a high starting current (locked rotor ⇒ overload
 - If the magnetic field strength is increased, the CEMF increases and the motor slows down


AC Motor Review

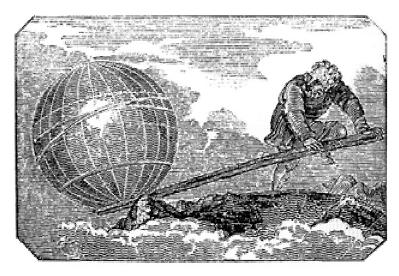
Rotating Field


- Armature tries to stay aligned with the field
- Armature aligns with field


Characteristics

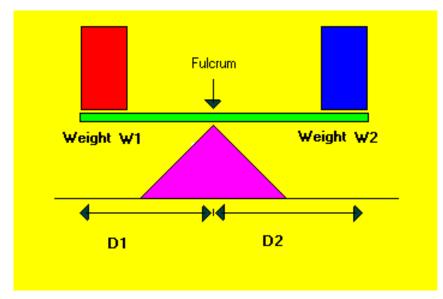
- Guarantees rotational direction
- Speed determined by frequency and the number of poles

- Resistance (R)
- Inductance $(X_L=2\pi fL)$
- Impedance $(Z = \overrightarrow{R} + \overrightarrow{X}_L)$
 - Length: $|Z| = SQRT(R^2 + X_L^2)$
 - Angle: $\theta = ARCTAN(X_L/R)$



Motor/Generator Equations Review

- EMF = I * R (Ohms Law)
- $X_L = 2 * \pi * L$ (Inductive reactance, remember vectors)
- Power = I * V (in Watts, I & V are RMS values) (1 HP = 736 Watts)
- cemf= V_{total} -(Ia*Ra)-(I_{field} *R $_{field}$)
 (just Kirchoff, armature winding & field winding in series, same current in both windings)
- T=(hp)(5252)/Na (Na=rev/min, T in ft-lbs)
- Nm=(T)*1Nm/0.73756 lb-ft (Nm=Newton-meter)
- Kemf=cemf/(Ifield*Na) the generator constant
- Hp=(lb-ft)*(rev/min)/5252
- Synchronous speed=120*frequency/no. of poles


Levers/Torque Review

- $F^{1}*D^{1} = F^{2}*D^{2} = Torque$
- Torque units
 - Foot-Lbs
 - Newton-Meters
- Rotational acceleration
 - $-T = J * \alpha$
 - J is "moment of inertia"
 - $-\alpha$ is "angular acceleration"

 Δ O Σ MOI Π OY Σ T Ω KAI KIN Ω THN Γ HN Give me where [to]stand and [I will] move the earth

Archimedes 340 AD

Gear/Pulley Review

Operation

- Gears are mechanical transformers
- $RPM_1*R_1 = RPM_2*R_2$
- $T_1/R_1 = T_2/R_2$
- You can use the number of teeth instead of the radius
- Belts and Pulleys work the same way as gears

Motor/Generator Equations Again

- EMF = I * R (Ohms Law)
- $X_L = 2 * \pi * L$ (Inductive reactance, remember vectors)
- Power = I * V (in Watts, I & V are RMS values) (1 HP = 736 Watts)
- cemf= V_{total} -(Ia*Ra)-(I_{field} *R $_{field}$) (just Kirchoff, armature winding & field winding in series, same current in both windings)
- T=(hp)(5252)/Na (Na=rev/min, T in ft-lbs)
- Nm=(T)*1Nm/0.73756 lb-ft (Nm=Newton-meter)
- Kemf=cemf/(Ifield*Na) the generator constant
- Hp=(lb-ft)*(rev/min)/5252
- Synchronous speed=120*frequency/no. of poles

Another Practice problem

A 24 volt, ½ HP, Permanent Magnet, 1800 RPM, DC motor uses 20 amps at its rated output.

(This is all stated on the motor "Nameplate")

- What is the CEMF if Ra=0.1(Ifield = 0) cemf=Vtotal-(Ia*Ra)-(Ifield*Rfield) cemf=24 - (20*0.1) cemf=24 - 2 = 22 volts

- What is the Kemf for this motor?

```
Kemf=cemf/(Ifield*Na)
Kemf=22/(20*1800) = 11/18000 = 0.00061 = 0.61*10^{-3}
```

- Find the Motor Efficiency and Torque
 - Power in = V * I = 24 * 20 = 480
 - Power out = 0.5 HP = 0.5 * 736 (W/HP) = 368 Watts
 - Efficiency = 368/480 = 0.77 or 77%
 - Torque = HP*5252/Na = 0.5*5252/1800 = 1.46 ft-lbs
 - Torque = 1.46/0.73756 = 1.98 newton-meters

Section 14 Schedule

Session 14a	11/19	Intro to Applied Technical Mathematics	Notes: Binary/Octal/Hex, Powers of 10, Basic Algebra
Session 14b	11/24	DC & AC Motors	Elect1-7: pp. 7-39: 7-69, pp. 7-89: 7-117
Session 14c	11/26	Levers/gears, Torque/HP/RPM	Notes
Quiz 14 Review (Quiz 14 due 12/07)	12/01		Notes
Quiz 14 Results	12/08		
MT8 (Sat, Cheshire)	12/13		
MT8 Results	12/15		
Holiday break till	1/5/04		