Bipolar Transistors

Session 5d for Electronics and Telecommunications A Fairfield University E-Course Powered by LearnLinc

Module: Semiconductor Electronics (in two parts)

- Text: "Electronics," Harry Kybett, Wiley, 1986, ISBN 0-471-00916-4
- References:
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
- Semiconductors, Diodes and Bipolar Transistors
 - 5 on-line sessions plus one lab
- FETs, SCRs, Other Devices and Amplifiers
 - 5 on-line sessions plus one lab
- Mastery Test part 3 follows this Module

Section 5: Semiconductors, Diodes and Bipolar Transistors

• **OBJECTIVES**: This section reviews semiconductors, doping and junctions. The characteristics and application of Diodes and Bipolar Transistors are then studied.

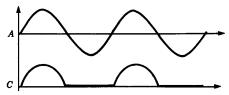
Section 5 Schedule:

Session 5a	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39
MT2 Results	- 09/23	We'll discuss MT2	
Session 5b	- 09/25	Diodes	Kybett Chapter 2
Session 5c	- 09/30	Diode Applications	Kybett Chapter 11
Session 5d (lab - 10/05, 3		Bipolar Transistors	Kybett pp 51 - 70
Session 5d (lab - 10/05, Session 5e (Quiz 4 due 1	Sat.) - 10/07	Bipolar Transistors Transistor Amplifiers	Kybett pp 51 - 70 Kybett pp 173 - 201
(lab - 10/05, Session 5e (Quiz 4 due 1	Sat.) - 10/07 0/12)	•	

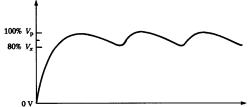
Diode Review

- Diodes are electronic one-way valves
 - Current can flow from anode to cathode
 - Current is blocked in the reverse direction
- Forward voltage drop
 - Silicon $V_f = 0.7$ volts
 - Germanium $V_f = 0.3$ volts
 - Schottky $V_f = 0.1$ volts
 - GaAs $V_f = 2$ volts
- Peak Inverse Voltage (PIV, PRV, Zener)
- These are non-linear devices (no superposition)

Current flows from A to B but not from B to A.

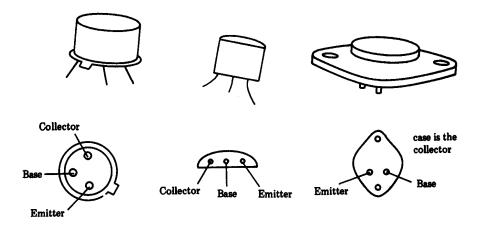

В

Diode Analysis Review

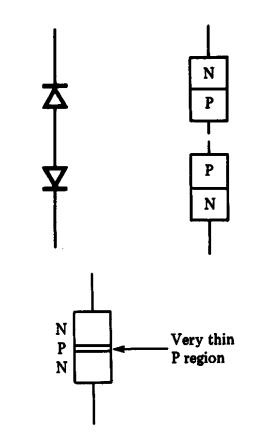

- First determine if the diode is:
 - Forward biased: conducting with a small voltage drop
 - Reverse biased: an open switch
 - In reverse breakdown (PIV): conducting with a large voltage drop (The Zener voltage)
- Replace the diode with a simple equivalent and then analyze the circuit (Ohm and Kirchoff)
- Check power dissipation in each component to avoid overheating

Rectifier Review

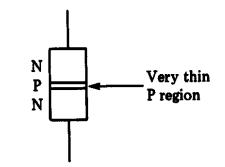
- Power diodes are used to convert AC to DC
- Half-wave rectifier
 - One diode blocks the negative half cycles of sine waves
 - Produces "pulsed" DC
- Full-wave


- Two diodes (or bridge) fills in the half wave gaps for better efficiency and less "ripple"
- Electrolytic capacitors used to smooth (filter) the DC output for less ripple.
 - The output follows the peaks in the pulsed DC

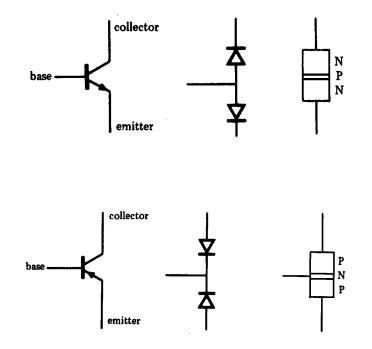
- Ripple: the discharge of the capacitor between pulses


Real Transistors

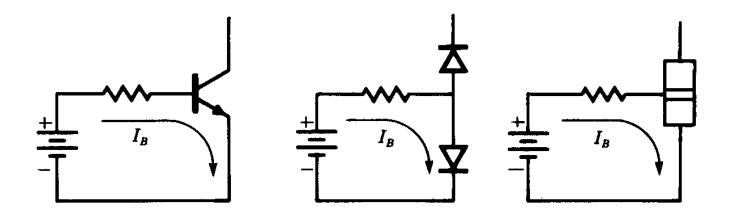
- The silicon "chip" is sealed inside a package
- Large metal packages handle more current/power
- There are three connections; Base, Emitter, and Collector


Transistor PN Junctions

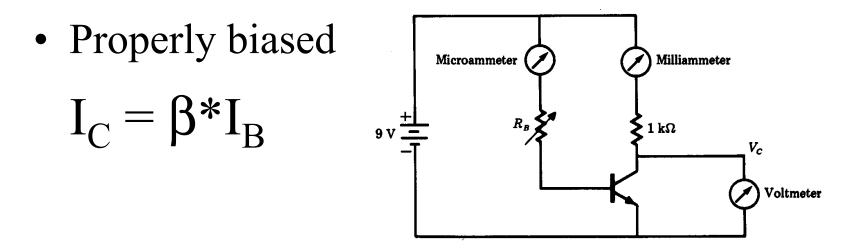
- Transistors: two junctions
 - NPN or PNP structure
 - Center region (Base) is very thin (produces the "Transistor Action")
- The lower diode ("Base-Emitter") current controls the transistor (input)
- The upper diode ("Base-Collector") current is the output
- If base current flows, the collector current is: $I_C = \beta * I_B$ (unless the transistor is "saturated")


Transistor Action

- Normal biasing
 - Base-Emitter diode: forward biased
 - Base Collector diode: reverse biased
- Base-Collector "depletion region" extends across the thin base region
- Each Base-Emitter carrier penetrates the Base Collector depletion region causing an"avalanche" breakdown (the Zener effect)
- A large collector current flows


NPN and PNP

- Complemetary Transistors
 - Voltages and currents in PNP transistors are all opposite those of NPN transistors
 - NPN transistors are more common


The Base-Emitter Junction

• Analyze Base current (I_B) flow as a diode (usually silicon)

Transistor Action

- Beta (β) is a property of the transistor design. (thinner base higher β)
- Note: reversing the emitter and collector leads produces poor transistor action

Summary

- Bipolar Transistors produces current-controlled current
 - If a base current flows, the collector current is:
 - $I_{C} = \beta * I_{B}$ (unless the transistor is "saturated")
 - The Base-Emitter diode will have a 0.7v voltage drop (if the transistor is to be on)
- PNP transistors behave the same as NPN transistors, but all voltages and currents are reversed.
- Transistors are tested using an ohmmeter; test each of the diodes (base-emitter and base-collector) separately for low impedance when forward biased and high impedance when reverse biased.

Section 5 Schedule:

Session 5a -	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39
MT2 Results -	- 09/23	We'll discuss MT2	
Session 5b	- 09/25	Diodes	Text Chapter 2
Session 5c	- 09/30	Diode Applications	Text Chapter 11
		Bipolar Transistors	Text pp 51 - 70
(lab - 10/05, Sat.) Session 5e – 10/07 (Quiz 4 due 10/12)		Transistor Amplifiers	Text pp 173 - 201
Session 5f	- 10/14	Review (Discuss Quiz 4)	
Break to introduce Learnlinc version 6.1		About 2 weeks to set up the computers and retrain us	
10/2/2002		Electronics and Telecommunications	15