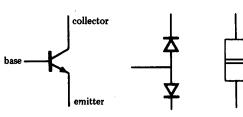
Transistor Amplifiers

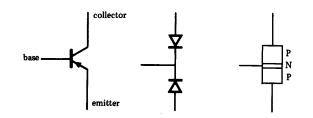
Session 5e for Electronics and Telecommunications A Fairfield University E-Course Powered by LearnLinc

Module: Semiconductor Electronics (in two parts)

- Text: "Electronics," Harry Kybett, Wiley, 1986, ISBN 0-471-00916-4
- References:
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
- Semiconductors, Diodes and Bipolar Transistors
 - 5 on-line sessions plus one lab
- FETs, SCRs, Other Devices and Amplifiers
 - 5 on-line sessions plus one lab
- Mastery Test part 3 follows this Module

Section 5: Semiconductors, Diodes and Bipolar Transistors

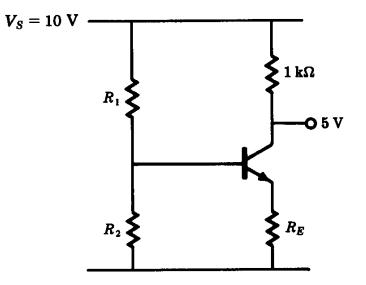

• **OBJECTIVES**: This section reviews semiconductors, doping and junctions. The characteristics and application of Diodes and Bipolar Transistors are then studied.


Section 5 Schedule:

Session 5a	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39
MT2 Results	- 09/23	We'll discuss MT2	
Session 5b	- 09/25	Diodes	Kybett Chapter 2
Session 5c	- 09/30	Diode Applications	Kybett Chapter 11
Session 5d (lab - 10/05, S		Bipolar Transistors	Kybett pp 51 - 70
Session 5e (Quiz 4 due 1		Transistor Amplifiers	Kybett pp 173 - 201
Session 5f (Oct 14 is a ho		Review (Discuss Quiz 4)	
Break to introduce Learnlinc version 6.1 10/6/2002		About 2 weeks to set up the computers and retrain us Electronics and Telecommunications	4

Transistor Review

- Transistors have three leads: base, emitter and collector
- Testing via ohm meter
 - Two diodes back to back: test each separately for impedance ratio
 - Check collector to emitter for high impedance (leakage)
- Beta (β): Current gain $\beta = I_C/I_B$, as long as no "saturation" ($V_{CE} > 0.2v$)
 - Transistor "action"
 - Carriers injected into "depletion region" (very thin base region)
- NPN and PNP: currents and voltages reversed
- Analyze Base current (I_B) flow as a diode
- Collector current: $I_C = I_B * \beta$
- Collector voltage: $V_C = V_{batt} I_C * R_C$

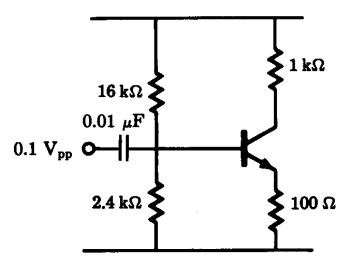


Today's Topics

- Transistor Biasing
 - Setting the "Quiesent Point"
 - Stability
- Amplifier characteristics
 - Gain
 - Impedances (input and output)
- Amplifier Configurations
 - Common Emitter
 - Common Collector
 - Common Base

Transistor Biasing

- 1. Set $V_B = 0.7v + desired V_E$
- 2. $R_1 \& R_2$ form a voltage divider $V_B = V_S * R_2 / (R_1 + R_2)$
- 3. Determine $R_E = V_E / I_E$ ($I_E = I_C + I_B$)
- 4. DC gain is approx. R_C / R_E
- 5. Input Impedance is approx. βR_E (in parallel with R_1 and R_2 so keep them reasonably large)


Biasing (continued)

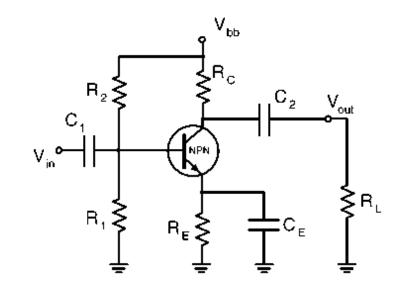
•
$$V_{bb} = 10 \text{ v}; V_C = 5 \text{ v}$$

 $I_C = 5 \text{ mA} \sim I_E (I_B = I_C / \beta)$

• Set
$$V_E = 0.5 \text{ v}; R_E = 100 \Omega$$

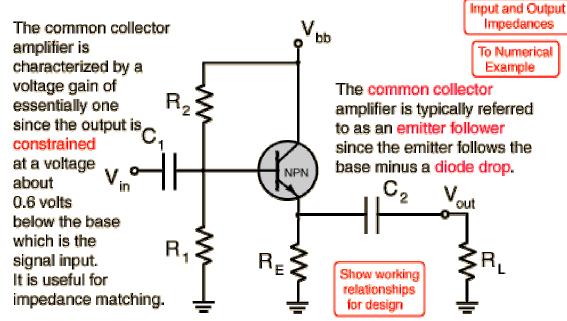
•
$$V_B = 0.5 + 0.7 = 0.12v$$

• $R_2 / (R_1 + R_2) = 0.12/10$ (Use resistors at least 10 times those in the output) $R_2 = 2.2 \text{ k}\Omega; R_1 = 16 \text{ k}\Omega$

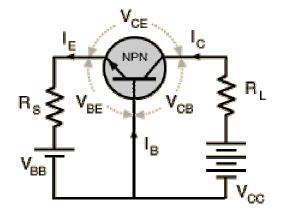

Amplifier characteristics

- Gain (AC and DC can be different)
 - Voltage (V_{out} / V_{in})
 - Power (P_{out} / P_{in})
- Impedance
 - Input: loads the source reducing the input
 - Output: A low output impedance makes the output voltage independent of the load impedance.

(1)


Common Emitter

- High input impedance
 - $R_1 \parallel R_2 \parallel (R_{in} + \beta R_E) \dots R_{in} = h_{ie} \sim 1 \text{ k}\Omega$
- High voltage gain
 - $\beta R_C / (R_{in} + \beta R_E)$ (general case)
 - $\sim R_C / R_E$ (no bypass capacitor)
 - $-~\sim\beta*~R_{_{\rm C}}/~R_{_{\rm in}}$ (fully bypassed)
- Medium output impedance


Common Collector (Emitter Follower)

- The common collector junction transistor amplifier is commonly called an emitter follower. The voltage gain of an emitter follower is just a little less than one since the emitter voltage is constrained at the diode drop of about 0.7 volts below the base . Its function is not voltage gain but current or power gain and impedance matching.
- It's input impedance is much higher than its output impedance. The low output impedance of the emitter follower matches a low impedance load and buffers the signal source from that low impedance.

Common Base

• This configuration is sometimes used for high frequency applications because the base separates the input and output, minimizing oscillations at high frequency. It has a high voltage gain, relatively low input impedance and high output impedance compared to the common collector.

Summary

- Transistor Biasing
 - Setting the "Quiesent Point"
 - DC Stability
- Amplifier characteristics
 - Gain
 - Impedances (input and output)
- Amplifier Configurations
 - Common Emitter (voltage gain)
 - Common Collector (buffer, low output impedance)
 - Common Base

(only used in some high frequency applications)

Section 5 Schedule:

Session 5a	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39
MT2 Results	- 09/23	We'll discuss MT2	
Session 5b	- 09/25	Diodes	Text Chapter 2
Session 5c	- 09/30	Diode Applications	Text Chapter 11
		Bipolar Transistors	Text pp 51 - 70
(lab - 10/05, S Session 5e (Quiz 4 due 1	- 10/07	Transistor Amplifiers	Text pp 173 - 201
Session 5f (the 14 th is a]	- 10/16	Review (Discuss Quiz 4)	
× ·			
Break to introduce		About 2 weeks to set up the	
Learnlinc version 6.1		computers and retrain us	
10/6/2002		Electronics and Telecommunications	14