Review: Quiz 5

Session 5e for Electronics and Telecommunications A Fairfield University E-Course Powered by LearnLinc

Module: Semiconductor Electronics (in two parts)

- Text: "Electronics," Harry Kybett, Wiley, 1986, ISBN 0-471-00916-4
- References:
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
- Semiconductors, Diodes and Bipolar Transistors
 - 5 on-line sessions plus one lab
- FETs, SCRs, Other Devices and Amplifiers
 - 5 on-line sessions plus one lab
- Mastery Test part 3 follows this Module

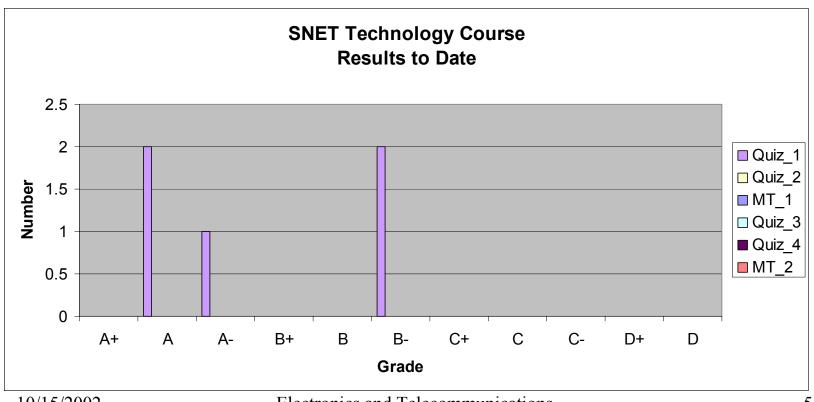
Section 5: Semiconductors, Diodes and Bipolar Transistors

• OBJECTIVES: This section reviews semiconductors, doping and junctions. The characteristics and application of Diodes and Bipolar Transistors are then studied.

Section 5 Schedule:

Session 5a	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39
MT2 Results	- 09/23	We'll discuss MT2	
Session 5b	- 09/25	Diodes	Kybett Chapter 2
Session 5c	- 09/30	Diode Applications	Kybett Chapter 11
Session 5d (lab - 10/05, S		Bipolar Transistors	Kybett pp 51 - 70
Session 5e (Quiz 4 due 1		Transistor Amplifiers	Kybett pp 173 - 201
		Review (Discuss Quiz 4)	
Break to introduce		About 2 weeks to set up the	

Electronics and Telecommunications

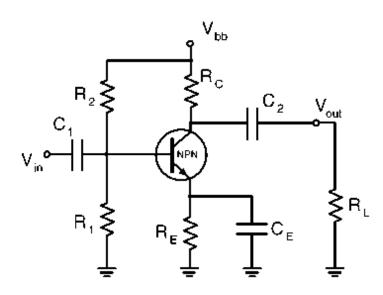

computers and retrain us

Learnlinc version 6.1

10/15/2002

Quiz 5 Results

Those that turned in their Quiz 5 so far—Nice Job.


Quiz 5

- We'll use Appshare and Word to go over the T/F and Multiple Choice parts of Quiz 5
- The circuit will take a little longer.

 My error made it a difficult problem

Common Emitter Amplifier

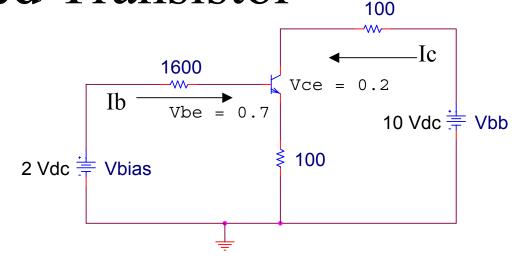
- High input impedance
 - $R_1 \| R_2 \| (R_{in} + \beta R_E) \dots R_{in} = h_{ie} \sim 1 \text{ k}\Omega$
- High voltage gain
 - $\beta * R_C / (R_{in} + \beta * R_E)$ (general case)
 - $\sim R_C / R_E$ (no bypass capacitor)
 - $-\sim \beta* R_C/R_{in}$ (fully bypassed)

- All this is true ONLY if the transistor is biased properly
 - $-V_{be} \sim 0.7 \text{ volts}$ $V_{ce} \sim V_{bb}/2$
- In our Quiz: C_1 , C_2 and C_E have large values

$$-V_{bb} = 10 \text{ volts} \qquad R_1 = 2 \text{ k}\Omega \qquad R_2 = 8 \text{ k}\Omega$$

$$-R_E = 100 \Omega \qquad R_C = 1 \text{ k}\Omega \qquad \beta = 200$$

Biasing


- To find V_b :
 - We have a voltage divider formed by R_1 (2k) and R_2 (8k)
 - If there is no base current: Vb = 10v*2k/(2k+8k) = 2 volts
 - The Thevenin resistance of this bias voltage is $R_1 \parallel R_2$ or 1/R = 1/2 + 1/8 = 5/8 = 1/1.6 so $R_{th} = 1.6$ kohms this can be used to determine the voltage drop if I_h is not zero
- Assuming Ib is small:

$$-V_e = V_b - 0.7 = 1.3 \text{ volts}$$

- $I_e = 1.3 \text{ volts} / 100 \text{ ohms} = 13 \text{ mA}$
- $V_c = V_{bb} I_c * R_c = 10 0.013 * 1000 = -3 \text{ volts } \dots \text{ oops}$
- The transistor is "Saturated" $V_{ce} \sim 0.2$ volts We have to start over and it's not easy note: This is good stuff, but NOT required for the MTs

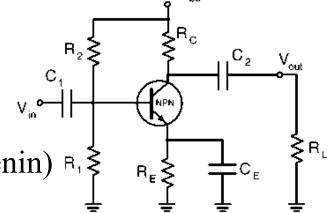
Saturated Transistor

- There are two loops!
- Use Kirchoff twice

• In the Base loop

$$2v = 1600 * I_b + 0.7 + 100 * (I_b + I_c)$$
 or
 $1.3v = 1700 * I_b + 100 * I_c$

• In the Collector loop


$$10v = 1000 * I_c + 0.2 + 100 * (I_b + I_c)$$
 or $9.8v = 100 * I_b + 1100 * I_c$

Two Equations in Two Unknowns

• Our Equations:

$$1.3v = 1700 * I_b + 100 * I_c$$

 $9.8v = 100 * I_b + 1100 * I_c$

- Several ways to find a solution
 - Solve one for Ib and substitute into the other to get Ic
 - I used a tool called MatLab
- $I_c = 8.89 \text{ mA}$ and $I_b = 0.24 \text{ mA}$
- Vc = 10 8.89 = 1.1 v
- Ve = 0.091*100 = 0.9 v and
- Vb = 2 0.00024*1600 (using Thevenin) R₁ = 2 0.384 = 1.62v
- $\beta = I_c / I_b = 8.89 / 0.24 = 37$ It has dropped in saturation

Section 5 Schedule:

Session 5a -09/18 Semiconductors and Doping Elect 1-7 1.23 -1.39

MT2 Results -09/23 We'll discuss MT2

Session 5b -09/25 Diodes Text Chapter 2

Session 5c -09/30 Diode Applications Text Chapter 11

Session 5d -10/02 Bipolar Transistors Text pp 51 - 70

(lab - 10/05, Sat.)

Session 5e -10/07 Transistor Amplifiers Text pp 173 - 201

(Quiz 4 due 10/12)

Session 5f -10/16 Review (Discuss Quiz 4)

(the 14th is a Holiday)

Break to introduce Learnlinc version 6.1

About 2 weeks to set up the computers and retrain us