Review and Introduction to Part 6

Session 5h for Electronics and Telecommunications A Fairfield University E-Course Powered by LearnLinc

Module: Semiconductor Electronics (in two parts)

- Text: "Electronics," Harry Kybett, Wiley, 1986, ISBN 0-471-00916-4
- References:
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - <u>Electronics Tutorial</u> (Thanks to Mark Sokos)
- 5 Semiconductors, Diodes and Bipolar Transistors
 - 5 on-line sessions plus one lab
- 6 FETs, SCRs, Other Devices and Amplifiers
 - 5 on-line sessions plus one lab
- Mastery Test part 3 follows this Module

Section 5: Semiconductors, Diodes and Bipolar Transistors

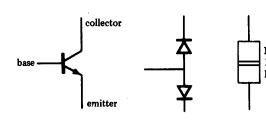
• **OBJECTIVES:** This section reviews semiconductors, doping and junctions. The characteristics and application of Diodes and Bipolar Transistors are then studied.

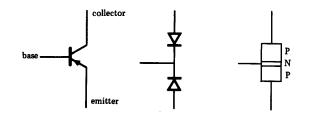
Section 5 Schedule:

Session 5a	- 09/18	Semiconductors and Doping	Elect 1-7 1.23 – 1.39			
MT2 Results	- 09/23	We'll discuss MT2				
Session 5b	- 09/25	Diodes	Kybett Chapter 2			
Session 5c	- 09/30	Diode Applications	Kybett Chapter 11			
Session 5d (lab - 10/05, S	– 10/02 Sat.)	Bipolar Transistors	Kybett pp 51 - 70			
Session 5e (Quiz 4 due 1	- 10/07	Transistor Amplifiers	Kybett pp 173 – 201			
Session 5f	,	Review (Discuss Quiz 4)				
(Oct 14 is a holiday)						
Session 5g	- 11/13	Zener Design Exercise	Email Hand-Out			
	11/15					
Session 5h	01/06	Review and Intro to Part 6				
1/13/2003		Electronics and Telecommunications	4			

Diode Review

- Diodes are electronic one-way valves
 - Current can flow from anode to cathode
 - Current is blocked in the reverse direction
- Forward voltage drop
 - Silicon $V_f = 0.7$ volts
 - Germanium $V_f = 0.3$ volts
 - Schottky $V_f = 0.1$ volts
 - GaAs $V_f = 2$ volts
- Peak Inverse Voltage (PIV, PRV, Zener)
- These are non-linear devices (no superposition)


В


Diode Analysis Review

- First determine if the diode is:
 - Forward biased: conducting with a small voltage drop
 - Reverse biased: an open switch
 - In reverse breakdown (PIV): conducting with a large voltage drop (The Zener voltage)
- Replace the diode with a simple equivalent and then analyze the circuit (Ohm and Kirchoff)
- Check power dissipation in each component to avoid overheating

Transistor Review

- Transistors have three leads: base, emitter and collector
- Testing via ohm meter
 - Two diodes back to back: test each separately for impedance ratio
 - Check collector to emitter for high impedance (leakage)
- Beta (β): Current gain $\beta = I_C/I_B$, as long as no "saturation" ($V_{CE} > 0.2v$)
 - Transistor "action"
 - Carriers injected into "depletion region" (very thin base region)
- NPN and PNP: currents and voltages reversed
- Analyze Base current (I_B) flow as a diode
- Collector current: $I_C = I_B * \beta$
- Collector voltage: $V_C = V_{batt} I_C * R_C$

Transistor Review (2)

- Amplifier Configurations
 - Common Emitter (voltage gain)
 - Common Collector (buffer, low output impedance)
 - Common Base
 - (only used in some high frequency applications)
- Non-Linear Operation
 - Saturation: Transistor is fully on ($V_{ce} = 0.2$, low β)
 - Cutoff: Transistor is off ($V_{be} < 0.5$, $I_c = 0$)

Section 6: FETs, SCRs, Other Devices and Operational Amplifiers

• **OBJECTIVES**: This section reviews additional important semiconductor devices and their applications. The Operational Amplifier is also studied.

Section 6 Schedule:

Session 5h	- 01/13	Review and Intro to Section 6				
Session 6a	- 01/15	Field Effect Transistors	Kybett	pp 70–77,		
Session 6b	- 01/20	Transistors as a switch	Kybett	pp 201-209 pp 78–107		
Session 6c	-01/22	SCR's, Triacs and UJTs				
Session 6d		Class "A", "B", and "C" Amps				
(Lab - 02/01, S	/		T7 1	200 215		
Session 6e	- 02/05	Op-Amps	Kybett	pp 209-215		
Session 6f	-02/10	Review for Quiz 6				
(Quiz 6 due 02/23)						
Session 6g	- 02/24	Discuss Quiz 6				
Session 6h	- 02/26	Review for MT3				
MT3	- 03/02	MT3 Exam				
Session 6I	- 03/10	Discuss MT3				
1/13/2003		Electronics and Telecommunications		10		