Derived Logic Gates and Truth Tables

Part 7b of "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Module: Digital Electronics (in two parts)

- Text: "<u>Digital Logic Tutorial</u>," <u>Ken Bigelow</u>, http://www.play-hookey.com/digital/
- References:
 - "Electronics Tutorial", part 10 (Thanks to Alex Pounds)
 http://doctord.dyndns.org:8000/courses/Topics/Electronics/Alex_Pounds/Index.htm
- Contents:
 - 7 Digital Electronics 1
 - 5 on-line sessions plus one lab and a quiz
 - 8 Digital Electronics 2
 - 5 on-line sessions plus one lab and a quiz
- Mastery Test part 4 follows this Module

Section 7: Digital Electronics 1

- Logic gates and Boolean algebra
- Truth Tables
- Binary numbers
- Memory
- Flip-Flops

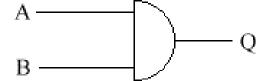
Section 8: Digital Electronics 2

- Clocks and Counters
- Shift Registers
- Decoders
- Multiplexers & Demultiplexers
- Sampling

• MT4

Section 7 Schedule

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	Alex Pounds: Part 10 "Ken B": Home, Basic Gates, & Boolean Algebra
Session 7b	03/10	Logic Gates and Truth Tables	Alex Pounds: Part 10 "Ken B": Derived Gates, Xor
Session 7c	03/12	Binary numbers	"Keb B": Binary Addition
Session 7d	03/17	Memory: Registers, RAM & ROM	"Ken B": RS Nand Latch, Clocked RS Latch, D Latch
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Ken B": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip-Flop Symbols
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7	
Session 7g	03/31	Quiz Results	


Review

- Binary
 - 1, "True", "On", "High" (5 volts in electronics)
 - 0, "False", "Off", "Low" (0 volts in electronics)
- Basic Logic Gates
 - AND, OR, NOT
- Truth Tables:
 - Enumerate outputs for all input combinations
- Boolean Algebra
 - Named Variables: True or False
 - Expressions: Equations describing relationships

Basic Logic Gates

- Q is True when both A AND B are True

$$- Q = A*B A - --$$

- OR
 - Q is True when either A or B is True
 - -Q = A + B
- NOT

 Q is true when A is false and false when A is true

$$- Q = A (or A')$$

A	Q
0	1
1	0

A	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

A	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

Boolean operators

• Complement: X¢ (opposite of X)

• AND:

• OR:

$$X \times Y$$

binary operators, described functionally by truth table.

Χ	Υ	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

Х	Υ	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

Х	NOT X
0	1
1	0

Theorems

(T1)

$$X + 0 = X$$
 (T1')
 $X \cdot 1 = X$
 (Identities)

 (T2)
 $X + 1 = 1$
 (T2')
 $X \cdot 0 = 0$
 (Null elements)

 (T3)
 $X + X = X$
 (T3')
 $X \cdot X = X$
 (Idempotency)

 (T4)
 (X')' = X
 (Involution)

 (T5)
 $X + X' = 1$
 (T5')
 $X \cdot X' = 0$
 (Complements)

More Theorems

$$(T6) X + Y = Y + X$$

$$(T6')$$
 $X \cdot Y = Y \cdot X$

(Commutativity)

(T7)
$$(X + Y) + Z = X + (Y + Z)$$

$$(T7') \qquad (X \cdot Y) \cdot Z = X \cdot (Y \cdot Z) \tag{}$$

(T8)
$$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$$

(T8')
$$(X + Y) \cdot (X + Z) = X + Y \cdot Z$$
 (Distributivity)

$$(T9) X + X \cdot Y = X$$

$$(T9') \qquad X \cdot (X + Y) = X$$

$$(T10) X \cdot Y + X \cdot Y' = X$$

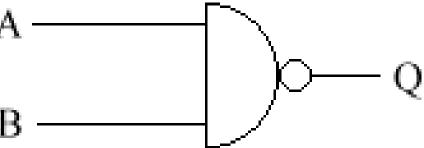
$$(T10') \quad (X+Y) \cdot (X+Y') = X$$

(T11)
$$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$$

(T11')
$$(X + Y) \cdot (X' + Z) \cdot (Y + Z) = (X + Y) \cdot (X' + Z)$$

Derived Logic Gates

- Derived gates are those made out of simple combinations of the basic gates.
- Common derived functions
 - NAND: inverted AND
 - NOR: inverted OR
 - XOR: the exclusive or A or B but not A and B
- These derived gates are the ones seen most often.


NAND Gate

• Q is False when both A AND B are True and True otherwise

$$-Q = \overline{(A*B)} = (A*B)'$$

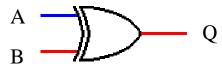
- It can have any number of inputs
- Note that this is an AND followed by a NOT

A	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

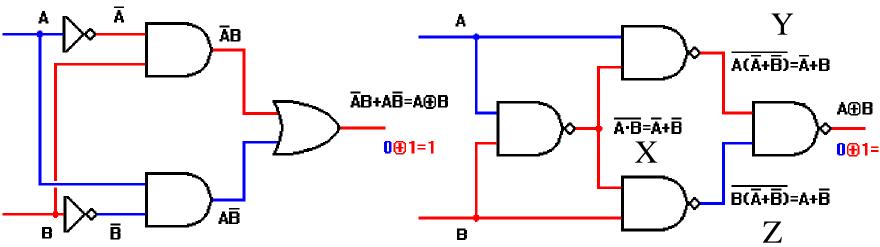
NOR Gate

• Q is False when either A or B is True

$$-Q = (A+B) = (A+B)'$$


- It can have any number of inputs
- Note that this is an OR followed by a NOT

A	В	Q
0	0	1
0	1	0
1	0	0
1	1	0


XOR: The Exclusive OR

• Q is True when either A OR B is True, but not when both A AND B are True

$$- Q = \overline{A} * B + A * \overline{B} = A \oplus B$$

A	В	X	Y	Z	Q
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	0

Simulation

• We'll again go to www.play-hookey.com/digital
to see these gates in action

Section 7 Schedule

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	"Hookey": Home, Basic Gates, & Boolean Algebra Alex Pounds: Part 10
Session 7b	03/10	Logic Gates and Truth Tables	"Hookey": Derived Gates, Xor
Session 7c	03/12	Binary numbers	"Hookey": Binary Addition
Session 7d	03/17	Memory: Registers, RAM & ROM	"Hookey": RS Nand Latch, Clocked RS Latch, D Latch, Notes
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Hookey": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip- Flop Symbols,
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7	
Session 7g	03/31	Quiz Results	

3/10/2003