Binary Numbers

Part 7c of "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Module: Digital Electronics (in two parts)

- Text: "<u>Digital Logic Tutorial</u>," <u>Ken Bigelow</u>, <u>http://www.play-hookey.com/digital/</u>
- References:
 - "<u>Electronics Tutorial</u>", part 10 (Thanks to Alex Pounds) http://doctord.dyndns.org:8000/courses/Topics/Electronics/Alex_Pounds/Index.htm
- Contents:
 - 7 Digital Electronics 1
 - 5 on-line sessions plus one lab and a quiz
 - 8 Digital Electronics 2
 - 5 on-line sessions plus one lab and a quiz
- Mastery Test part 4 follows this Module

Section 7: Digital Electronics 1

- Logic gates and Boolean algebra
- Truth Tables
- Binary numbers
- Memory
- Flip-Flops

Section 8: Digital Electronics 2

- Clocks and Counters
- Shift Registers
- Decoders
- Multiplexers & Demultiplexers
- Sampling
- MT4

Section 7 Schedule

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	Alex Pounds: Part 10 "Ken B": Home, Basic Gates, & Boolean Algebra
Session 7b	03/10	Logic Gates and Truth Tables	Alex Pounds: Part 10 "Ken B": Derived Gates, Xor
Session 7c	03/12	Binary numbers	"Keb B": Binary Addition "Vinay ": Binary Numbers
Session 7d	03/17	Memory: Registers, RAM & ROM	"Ken B": RS Nand Latch, Clocked RS Latch, D Latch
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Ken B": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip-Flop Symbols
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7	
Session 7g	03/31	Quiz Results	

Review

- Binary
 - 1, "True", "On", "High" (5 volts in electronics)
 - 0, "False", "Off", "Low" (0 volts in electronics)
- Basic Logic Gates
 - AND, OR, NOT
- Derived Logic Gates
 - NAND, NOR, XOR
- Truth Tables:
 - Enumerate outputs for all input combinations
- Boolean Algebra
 - Named Variables: True or False
 - Expressions: Equations describing relationships

Derived Logic Gates

- Derived gates are those made out of simple combinations of the basic gates.
- Common derived functions
 - NAND: inverted AND
 - NOR: inverted OR
 - XOR: the exclusive or A or B but not A and B
- These derived gates are the ones seen most often.

NAND Gate

• Q is False when both A AND B are True and True otherwise

$$-Q = (\overline{A^*B}) = (A^*B)'$$

- It can have any number of inputs
- Note that this is an AND followed by a NOT

Α	B	Q
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

• Q is False when either A or B is True

$$-Q = (A+B) = (A+B)'$$

- It can have any number of inputs
- Note that this is an OR followed by a NOT

A	B	Q
0	0	1
0	1	0
1	0	0
1	1	0

XOR: The Exclusive OR

3/11/2003

Digital Electronics

Number Systems

- Decimal Numbers (we have 10 fingers)
 - $-2705 = 2*10^3 + 7*10^2 + 0*10^1 + 5*10^0$
 - Zero is a place holder (an Arab invention)
 - Replaced Roman Numerals (MCMXVIII=1943)
- Binary Numbers
 - Based on powers of 2 (the "base" or "radix")
 - $-1010 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 10$ decimal
 - k bits can count up to $2^k 1$ (2^k values including zero)
 - 8-bits ⇒ 256 values, 16-bits ⇒ 65536 values (64k binary)
 - 10-bits \Rightarrow 1024 values (1k binary)
 - 20-bits \Rightarrow 1,048,576 values (1 meg binary)
 - Well suited for our 2-valued digital logic (computers)

Definitions

- Bit: the unit of information
- Nibble: 4-bits
- Byte: 8-bits
- Word: the unit of storage in a computer (32 bits in a Pentium)

Negative Numbers

- The first (leftmost, "most significant") bit is the "SIGN" bit
 - 0 means positive (half of the values)
 - 1 means negative (half of the values)
- "Sign-Magnitude" numbers (not used often)
 - Remaining bits give the magnitude 0110 = +3, 1110 = -3
- Two's complement negative numbers
 - First complement all bits (One's complement)
 - Add one
 - 5 = 0101, its one's complement is 1010 so
 - -5 = 1011 in two's complement

Adding Binary Numbers

- Let's do an example:
 - 17 = 00010001 (eight bits)
 - 11 = 00001011
 - 28 = 00011100 (watch out for "carries")

$$16 + 8 + 4$$

- Another example
 - 17 = 00010001
 - -5 = 11111011 (two's complement again)
 - $12 = 00001100 \text{ (the "overflow" is ignored)} \\ 8+4$
- Note that subtraction is done by adding the twos complement of the "subtrahend"

Binary Number Simulation

 We'll go to <u>http://vwop.port5.com/beginner/bhextut.html</u> (Vinay's site) to see binary numbers in action

Half Adder using Logic Gates

- An XOR gives us the result of adding two bits
- The AND gate gives us the "carry"
- What about the carry from the next lower result?

A Full Adder

• The "Full Adder" can do the job.

A	B	Cin	S	Cout
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Adder Simulation

• We'll again go to <u>www.play-hookey.com/digital</u> to see adders in action

Section 7 Schedule

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	"Hookey": Home, Basic Gates, & Boolean Algebra Alex Pounds: Part 10
Session 7b	03/10	Logic Gates and Truth Tables	"Hookey": Derived Gates, Xor
Session 7c	03/12	Binary numbers	"Hookey": Binary Addition "Vinay ": Binary Numbers
Session 7d	03/17	Memory: Registers, RAM & ROM	"Hookey": RS Nand Latch, Clocked RS Latch, D Latch, Notes
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Hookey": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip- Flop Symbols,
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7	
Session 7g	03/31	Quiz Results	
3/11/2003	1	Digital Electronics	19