Memory: The Latch, Registers, RAM & ROM

Part 7d of "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Module: Digital Electronics (in two parts)

- Text: "<u>Digital Logic Tutorial</u>," <u>Ken Bigelow</u>, <u>http://www.play-hookey.com/digital/</u>
- References:
 - "<u>Electronics Tutorial</u>", part 10 (Thanks to Alex Pounds) http://doctord.dyndns.org:8000/courses/Topics/Electronics/Alex_Pounds/Index.htm
- Contents:
 - 7 Digital Electronics 1
 - 5 on-line sessions plus one lab and a quiz
 - 8 Digital Electronics 2
 - 5 on-line sessions plus one lab and a quiz
- Mastery Test part 4 follows this Module

Section 7: Digital Electronics 1

- Logic gates and Boolean algebra
- Truth Tables
- Binary numbers
- Memory
- Flip-Flops

Section 8: Digital Electronics 2

- Clocks and Counters
- Shift Registers
- Decoders
- Multiplexers & Demultiplexers
- Sampling
- MT4

Section 7 Schedule

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	Alex Pounds: Part 10 "Ken B": Home, Basic Gates, & Boolean Algebra
Session 7b	03/10	Logic Gates and Truth Tables	Alex Pounds: Part 10 "Ken B": Derived Gates, Xor
Session 7c	03/12	Binary numbers	"Keb B": Binary Addition "Vinay ": Binary Numbers
Session 7d	03/17	Memory: The Latch, Registers, RAM & ROM	"Ken B": RS Nand Latch, Clocked RS Latch, D Latch
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Ken B": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip-Flop Symbols
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7	
Session 7g	03/31	Quiz Results	

Review

- Binary: 1, 0; True, False; On, Off; High, Low; 5 volts, 0 volts
- Basic Logic Gates: AND, OR, NOT
- Derived Logic Gates: NAND, NOR, XOR
- Truth Tables: Enumerate outputs for all input combinations
- Boolean Algebra: Named Variables, Expressions, Equations, Rules
- Binary Numbers:
 - Based on powers of 2
 - k bits can count up to $2^k 1$ (2^k values including zero)
 - 8-bits ⇒ 256 values, 16-bits ⇒ 65536 values (64k binary)
 - 10-bits \Rightarrow 1024 values (1k binary)
 - 20-bits \Rightarrow 1,048,576 values (1 meg binary)
 - Bits, Nibbles, Bytes, and Words
 - Negative Numbers: Two's complement
 - Binary Adders: half and full

The RS Latch

- Two NAND (or NOR) gates;
 One bit of Storage
- Two stable states
 - If on gate is on; the other must be off
- Bringing S' low (or S high) turns the top gate on

- the "SET" state; Q = 1, Q' = 0

• Bringing R' low (or R high) turns the bottom gate on;

- the "RESET" state; Q = 0, Q' = 1

The RS Latch

- Two NAND (or NOR) gates;
 One bit of storage
- Two stable states
 - If on gate is on; the other must be off
- Bringing S' low (or S high) turns the top gate on

- the "SET" state; Q = 1, Q' = 0

• Bringing R' low (or R high) turns the bottom gate on;

- the "RESET" state; Q = 0, Q' = 1

Simulation

• We'll again go to <u>www.play-hookey.com/digital</u> to see Latches in action

Parallel Register

- Use k latches to store a k-bit word
- Stores a k-bit binary number
 - -0 to $(2^k 1)$: an "unsigned integer" or
 - $- [2^{(k-1)} 1]$ to $[2^{(k-1)} 1]$: a "signed" integer or
 - A k-bit "Floating Point" number (not yet covered)

RAM Memory Unit

- "Address" Selects a word
- "Write" Sets or resets bits
- "Read" "strobes" the selected word into an output register

Read-Only Memory (ROM)

- Same as RAM, but simpler
- Data is established when manufactured and cannot be altered

Fig. 7-9 ROM Block Diagram

Digital Electronics

Other Semiconductor Memories

- PROM: Data "burned" in after manufacture
- EPROM: PROMS that are "erasable" (usually by exposure to UV light) (note that x-rays can also change them as in airport security)
- Flash or EEROM: Electrically erasable. Can be fully erased and rewritten in place using higher voltages than used to read data.

Section 7 Schedule

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	"Hookey": Home, Basic Gates, & Boolean Algebra Alex Pounds: Part 10
Session 7b	03/10	Logic Gates and Truth Tables	"Hookey": Derived Gates, Xor
Session 7c	03/12	Binary numbers	"Hookey": Binary Addition "Vinay ": Binary Numbers
Session 7d	03/17	Memory: The Latch, Registers, RAM & ROM	"Hookey": RS Nand Latch, Clocked RS Latch, D Latch, Notes
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Hookey": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip-Flop Symbols,
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7	
Session 7g	03/31	Quiz Results	
3/16/2003		Digital Electronics	14