Pulses, Clocks and Flip-Flops

Part 7e of "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Module: Digital Electronics (in two parts)

- Text: "<u>Digital Logic Tutorial</u>," <u>Ken Bigelow</u>, <u>http://www.play-hookey.com/digital/</u>
- References:
 - "<u>Electronics Tutorial</u>", part 10 (Thanks to Alex Pounds) http://doctord.dyndns.org:8000/courses/Topics/Electronics/Alex_Pounds/Index.htm
- Contents:
 - 7 Digital Electronics 1
 - 5 on-line sessions plus one lab and a quiz
 - 8 Digital Electronics 2
 - 5 on-line sessions plus one lab and a quiz
- Mastery Test part 4 follows this Module

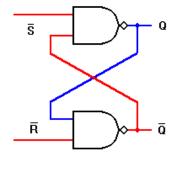
Section 7: Digital Electronics 1

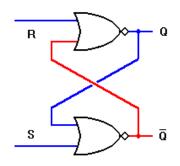
- Logic gates and Boolean algebra
- Truth Tables
- Binary numbers
- Memory
- Flip-Flops

Section 8: Digital Electronics 2

- Clocks and Counters
- Shift Registers
- Decoders
- Multiplexers & Demultiplexers
- Sampling
- MT4

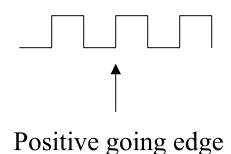
Section 7 Schedule

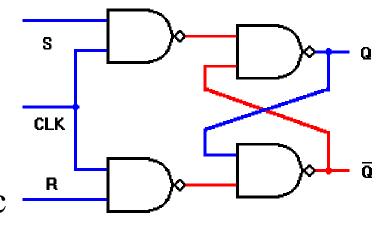

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	Alex Pounds: Part 10 "Ken B": Home, Basic Gates, & Boolean Algebra
Session 7b	03/10	Logic Gates and Truth Tables	Alex Pounds: Part 10 "Ken B": Derived Gates, Xor
Session 7c	03/12	Binary numbers	"Keb B": Binary Addition "Vinay ": Binary Numbers
Session 7d	03/17	Memory: The Latch, Registers, RAM & ROM	"Ken B": RS Nand Latch, Clocked RS Latch, D Latch
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Ken B": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip-Flop Symbols
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7	
Session 7g	03/31	Quiz Results	


Review

- Binary: 1, 0; True, False; On, Off; High, Low; 5 volts, 0 volts
- Basic Logic Gates: AND, OR, NOT
- Derived Logic Gates: NAND, NOR, XOR
- Truth Tables: Enumerate outputs for all input combinations
- Boolean Algebra: Named Variables, Expressions, Equations, Rules
- Binary Numbers:
 - Based on powers of 2
 - k bits can count up to $2^k 1$ (2^k values including zero)
 - 8-bits \Rightarrow 256 values, 16-bits \Rightarrow 65536 values (64k binary)
 - 10-bits \Rightarrow 1024 values (1k binary)
 - 20-bits \Rightarrow 1,048,576 values (1 meg binary)
 - Bits, Nibbles, Bytes, and Words
 - Negative Numbers: Two's complement
 - Binary Adders: half and full

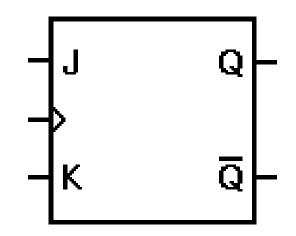
Review (continued)


- Storage
 - The RS Latch (a "bit" of storage)
 - Set = 1: Q=1
 - Reset = 1: Q=0
 - Register (n-bits of storage)
 - n latches (or flip-flops)
 - Stores a word (or byte) of data
 - RAM (addressable words of memory)
 - Read / write
 - Volatile (data lost if power lost)
 - ROMs, PROMs, EPROMs and EEROMS
 - Non-volatile memories


Pulses and Clocks

- Single Pulse
 - Signal normally low then high for a short time and goes back to low
- Clock
 - Signal alternates high-low at a regular rate

The Clocked RS LATCH


- Clock signal "enables Set and Reset pins
- Synchronous Logic
 - Slower than "ripple" logic

- Gates have input to output "delay"
- Delays build up as signals propagate through the logic
- Predictable timing
 - Clocked (synchronous) logic prevents the build up of delays

The JK Flip-Flop

- Edge Triggered
 Generic Flip-Flop
 - the triangle symbol
 - triangle: rising edge triggers change
 - Not then triangle: falling edge triggers change
- Truth Table
 - J and K
 determines state
 change

K Q(t+1)

0

1

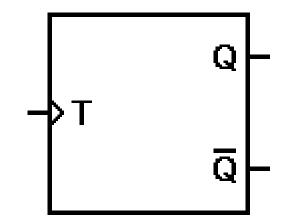
 $\begin{array}{ccc} 0 & Q(t) - No \ change \\ 1 & 0 & - Reset \end{array}$

Q'(t) – Complement

J

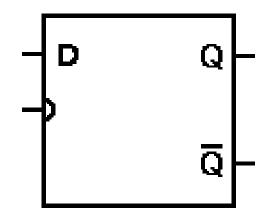
()

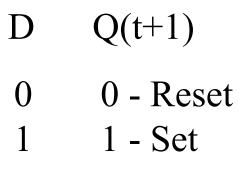
0


1

1

The T Flip-Flop


 State toggles (flips) on each positive going clock edge


- T Q(t+1)
- 0 Q(t) No change
- 1 Q'(t) Complement

The D Flip-Flop

• Simple triggered storage Flip-Flop

Simulation

• We'll again go to <u>www.play-hookey.com/digital</u> to see Latches in action

Section 7 Schedule

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	"Hookey": Home, Basic Gates, & Boolean Algebra Alex Pounds: Part 10	
Session 7b	03/10	Logic Gates and Truth Tables	"Hookey": Derived Gates, Xor	
Session 7c	03/12	Binary numbers	"Hookey": Binary Addition "Vinay ": Binary Numbers	
Session 7d	03/17	Memory: The Latch, Registers, RAM & ROM	"Hookey": RS Nand Latch, Clocked RS Latch, D Latch, Notes	
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Hookey": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip- Flop Symbols,	
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7		
Session 7g	03/31	Quiz Results		
3/18/2003 Digital Electronics 14				