Review for Quiz 7

Part 7f of "Electronics and Telecommunications" A Fairfield University E-Course Powered by LearnLinc

Module: Digital Electronics (in two parts)

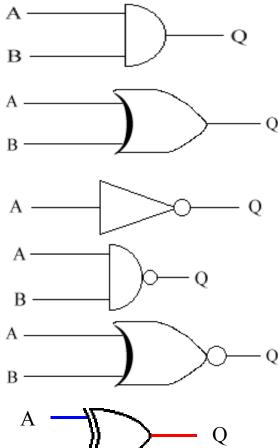
- Text: "<u>Digital Logic Tutorial</u>," <u>Ken Bigelow</u>, <u>http://www.play-hookey.com/digital/</u>
- References:
 - "Electronics Tutorial", part 10 (Thanks to Alex Pounds)
 http://doctord.dyndns.org:8000/courses/Topics/Electronics/Alex_Pounds/Index.htm
- Contents:
 - 7 Digital Electronics 1
 - 5 on-line sessions plus one lab and a quiz
 - 8 Digital Electronics 2
 - 5 on-line sessions plus one lab and a quiz
- Mastery Test part 4 follows this Module

Section 7: Digital Electronics 1

- Logic gates and Boolean algebra
- Truth Tables
- Binary numbers
- Memory
- Flip-Flops

Section 8: Digital Electronics 2

- Clocks and Counters
- Shift Registers
- Decoders
- Multiplexers & Demultiplexers
- Sampling


• MT4

Section 7 Schedule

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	Alex Pounds: Part 10 "Ken B": Home, Basic Gates, & Boolean Algebra
Session 7b	03/10	Logic Gates and Truth Tables	Alex Pounds: Part 10 "Ken B": Derived Gates, Xor
Session 7c	03/12	Binary numbers	"Keb B": Binary Addition "Vinay": Binary Numbers
Session 7d	03/17	Memory: The Latch, Registers, RAM & ROM	"Ken B": RS Nand Latch, Clocked RS Latch, D Latch
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Ken B": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip-Flop Symbols
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7	
Session 7g	03/31	Quiz Results	

Basics

- Binary: 1, 0; True, False; On, Off; High, Low; 5 volts, 0 volts
- Basic Logic Gates:
 - AND: Q = A * B * C(Q is only true if all inputs are true)
 - Q = A + B + C- OR: (Q is only false if all inputs are false)
 - NOT: Z = X'(Q is true if A is false, Q is false if A is true)
- Derived Logic Gates:
 - NAND (Q is only false if all inputs are true)
 - NOR (Q is only true if all inputs are false)
 - XOR (Q is true if one of A or B is true but not both)

Truth Tables

- Truth Tables: Enumerate outputs for all input combinations
 - Example: 5 people are voting for one of two candidates
 Let 0 represent Candidate A and 1 represent candidate B

Voter1	Voter2	Voter3	Winner
0	0	0	A
0	0	1	A
0	1	0	A
0	1	1	В
1	0	0	A
1	0	1	В
1	1	0	В
1	1	1	В

Boolean Algebra

- Named Variables
- Operators
- Expressions

(T1)
$$X + 0 = X$$
 (T1') $X \cdot 1 = X$ (Identities)

(T2)
$$X + 1 = 1$$
 (T2') $X \cdot 0 = 0$ (Null elements)

(T3)
$$X + X = X$$
 (T3') $X \cdot X = X$ (Idempotency)

$$(T4) \quad (X')' = X$$

(T5)
$$X + X' = 1$$
 (T5') $X \cdot X' = 0$ (Complements)

- Equations
- Rules

(T6)
$$X + Y = Y + X$$
 (Commutativity)

(T7)
$$(X + Y) + Z = X + (Y + Z)$$

(T7')
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$
 (Associativity)

(T8)
$$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$$

(T8')
$$(X + Y) \cdot (X + Z) = X + Y \cdot Z$$
 (Distributivity)

$$(T9) X + X \cdot Y = X$$

$$(T9') X \cdot (X + Y) = X$$

(Involution)

(T10)
$$X \cdot Y + X \cdot Y' = X$$

$$(T10')$$
 $(X + Y) \cdot (X + Y') = X$

(T11)
$$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$$

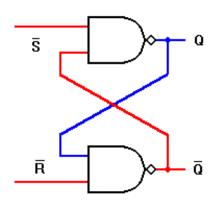
(T11')
$$(X + Y) \cdot (X' + Z) \cdot (Y + Z) = (X + Y) \cdot (X' + Z)$$

Binary Numbers:

Based on powers of 2

$$0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 = 64 + 32 + 8 + 4 + 1 = 109$$

- k bits can count up to $2^k 1$ (2^k values including zero)
 - 8-bits ⇒ 256 values, 16-bits ⇒ 65536 values (64k binary)
 - 10-bits ⇒ 1024 values (1k binary)
 - 20-bits ⇒ 1,048,576 values (1 meg binary)
 - Bits, Nibbles (4), Bytes (8), and Words
 - Negative Numbers: Two's complement
 - Binary Adders: half and full

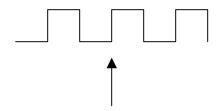

$$0 1 1 0 1 1 0 1 = 109$$

$$+0 0 0 0 1 0 1 1 = 11$$

$$0 1 1 1 1 0 0 0 = 120$$

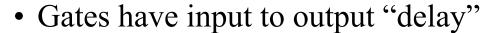
Storage

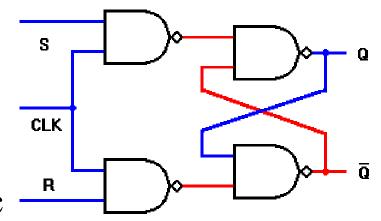
- The RS Latch (a "bit" of storage)
 - Set = 1: Q=1
 - Reset = 1: Q=0
- Register (n-bits of storage)
 - n latches (or flip-flops)
 - Stores a word (or byte) of data
- RAM (addressable words of memory)
 - Read / write
 - Volatile (data lost if power lost)
- ROMs, PROMs, EPROMs and EEROMS
 - Non-volatile memories



Pulses and Clocks

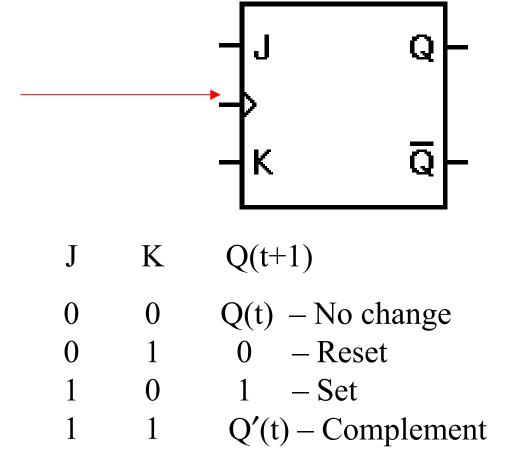
- Single Pulse
 - Signal normally low then high for a short time and goes back to low


- Clock
 - Signal alternates high-low at a regular rate

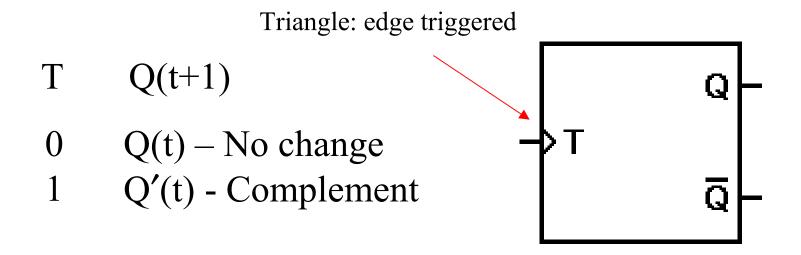

Positive going edge

Clocked Logic

- Clock signal "enables
 Set and Reset pins
- Synchronous Logic
 - Slower than "ripple" logic



- Delays build up as signals propagate through the logic
- Predictable timing
 - Clocked (synchronous) logic prevents the build up of delays


The JK Flip-Flop

- Edge Triggered Generic Flip-Flop
 - the triangle symbol
 - triangle: rising edge triggers change
 - Not then triangle: falling edge triggers change
- Truth Table
 - J and K determines state change

The T Flip-Flop

 State toggles (flips) on each positive going clock edge

The D Flip-Flop

- Simple triggered storage Flip-Flop
 - Note the half circle
 - It is controlled by clock level, not an edge

$$D \qquad Q(t+1)$$

Section 7 Schedule

Session 7a	03/05	Introduction: Binary, Logic Gates and Boolean	"Hookey": Home, Basic Gates, & Boolean Algebra Alex Pounds: Part 10
Session 7b	03/10	Logic Gates and Truth Tables	"Hookey": Derived Gates, Xor
Session 7c	03/12	Binary numbers	"Hookey": Binary Addition "Vinay": Binary Numbers
Session 7d	03/17	Memory: The Latch, Registers, RAM & ROM	"Hookey": RS Nand Latch, Clocked RS Latch, D Latch, Notes
Session 7e (Lab - 03/22, Sat.)	03/19	Pulses, Clocks and Flip- Flops	"Hookey": RS Flip-Flop, JK Flip-Flop, D Flip-Flop, Flip- Flop Symbols,
Session 7f (Quiz 7 due 03/30)	03/24	Review for Quiz 7	
Session 7g	03/31	Quiz Results	

3/23/2003