Digital Systems: Central Processing Unit (CPU)

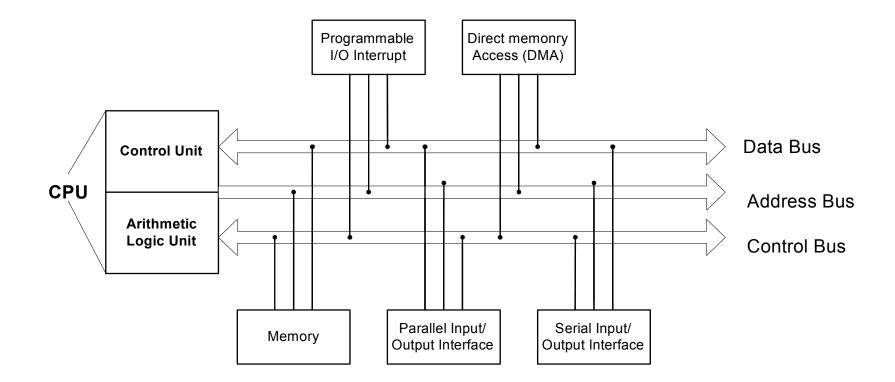
Session for "Digital Systems: Computers and Communications" A Fairfield University E-Course Powered by LearnLinc

Module: Digital Systems (in two parts)

- Texts:
 - "Computers," Capron, Benjamin Cummings, 1996, ISBN 0-8053-0662-5
 - "Telecommunications," Blyth, McGraw-Hill, 1990, ISBN 0-02-680841-2
 - "Understanding Telephone Electronics," Bigelow, Newnes, 1997, ISBN 0-7506-9944
- References:
 - <u>Electronics Tutorial</u> (Thanks to Alex Pounds)
 - Electronics Tutorial (Thanks to Mark Sokos)
- Part 9 Computers
 - 5 on-line sessions plus one lab
- Part 10 Digital Communications
 - 5 on-line sessions plus one lab
- Mastery Test part 5 follows this Module

Digital Systems: Topics

- Computer Architecture
 - Memory: ROM, RAM, Cache, Error Checking
 - CPU and Program Control
 Part 9
 - Secondary Storage: Floppy, Hard Drive, CD / DVD
 - I/O (Human: Video, Keyboard, & Pointer)
- Digital I/O: Serial, Parallel, IDE, USB. FireWire, SCSI
- Serial I/O: RS232
- Modems

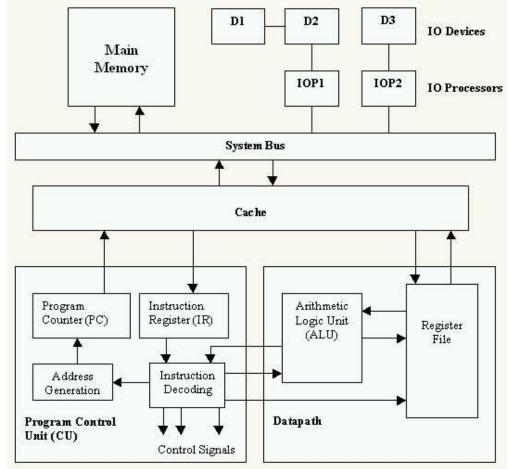

Part 10

- Telephone: Modulation and Data compression
- Cable and DSL
- Telephony Digital Transmission
- Packet Transmission
- Fiber Optics: SONET

Section 9 Schedule

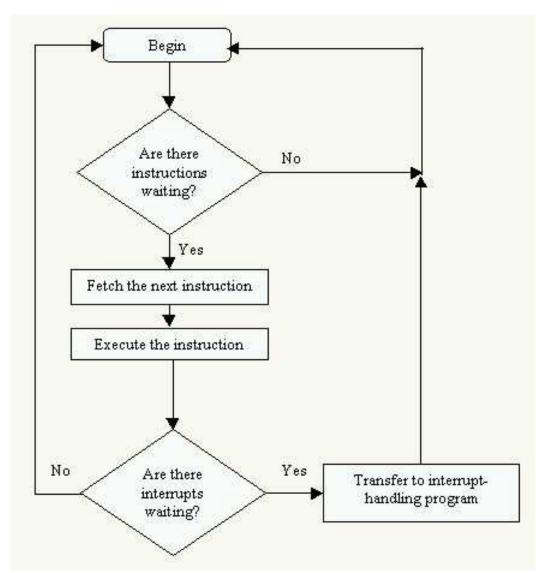
Session 9a (5/26 – Holiday)	05/21	Introduction: Computer Overview	Capron: Ch 1; Notes
Session 9b	05/28	The CPU (Central Processing Unit)	Capron: Ch 2;
Session 9c	06/02	I/O	Capron: Ch 3;
Session 9d	06/04	Data Storage	Capron: Ch 4;
Session 9e	06/09	Digital I/O: Serial, Parallel, IDE, SCSI, USB, and Firewire	Bigelow: pp. 285-288, 301-305; Notes
Session 9f (Lab - 06/14, Sat.) (Quiz 9 due 06/15)	06/11	Review for Quiz 9	
Session 9g (6/18 – no class)	06/16	Quiz Results	

Computer Architecture Review


Computer Architecture Review (2)

Programmable Direct memonry CPU • I/O Interrupt Access (DMA) Control Unit Data Bus **Control Unit** ALU CPU Address Bus Busses: Arithmetic Logic Unit Control Bus • Multiple: Memory, PCI, SCSI Parallel Input/ Serial Input/ Memory **Output Interface Output Interface** • Structure: – Data - Address - Control (buss operation) Memory: • RAM, ROM, Cache, & Secondary Interrupts: HW & SW • DMA: Fast data transfer • Parallel and Serial I/O **DB-25** DB-9 •

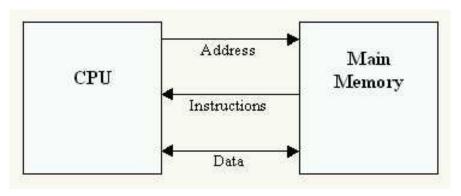
5/26/2003


Central Processing Unit (CPU) or Micro Processing Unit (MPU)

- Control Unit
 - Sequential operation control
 - Program Memory: determines operation sequence
- Register: Fast temporary storage
- ALU: Arithmetic Logic Unit
 - Fixed Point
 - Floating Point
 - Boolean Logic

Control Unit: Sequential control of operations

- The part of a <u>CPU</u> responsible for performing the <u>machine cycle</u> - fetch, decode, execute, store
- Fetches instructions from main memory and determines (decodes) their "type"
- Instruction "type" determines operation
 - Control Unit sequences the logic to perform the operation (execution)
 - Uses the "Registers" to accomplish the task
- Each "type" is an "OpCode" with parameters


5/26/2003

Typical CPU Op Codes & Operands

ADC	add with carry (AC + DR \Rightarrow AC)	LD adr	load AC from memory
ADD DR	add (AC + DR \Rightarrow AC)	LSR	one-bit shift right (AC)
AND	bit-wise logical AND (AC AND DR \Rightarrow AC)	NEG	two's complement negate (AC)
ASR	one-bit arithmetic shift right (divide AC by 2)	OR	bit-wise logical OR of AC and DR
BZ adr	Jump to instruction at adr if $AC = 0$	OUT #	output AC to port #
IN adr	input from port	SBC	subtract with borrow $(AC - DR \Rightarrow AC)$
JEQ adr	jump to adr if DR = AC	SL	one-bit shift left
JGE adr	jump to adr if $DR \ge AC$	ST adr	store AC in memory
JMP adr	Jump to adr	SUB	Subtract $(AC - DR \Rightarrow AC)$

Typical Registers

AC	Accumulator	stores the input or output (result) operand
DR(n)	Data register	stores a data word
PC	Program Counter	stores the instruction address
IR	Instruction Register	stores the instruction OpCode

Programming

- Machine Language:
 - Object code: specific to Hardware
 - Ones and Zeros: not for human consumption
- Assembly (programmer must have detailed knowledge of the hardware)
 - Human readable
 - Translated to "relocatable" machine code
 - Linked to produce binary "Object code"
- High-Level
 - Compiler: "C", "C++", Fortran, Cobol
 - Compiler "Parses" "source code" into assembly
 - Assembled and "linked" to produce object code
 - About 3 times slower than well written assembly
 - Interpreter: Basic, Java (easies to get working)
 - Source code is tokenized (sometimes miscalled compiling)
 - The "interpreter" then translates the program steps into machine code on-the-fly.
 - About 3 times slower than true compiled programs

ALU (Arithmetic Logic Unit)

- Fixed Point
 - Decimal arithmetic: 18.75
 - Binary arithmetic: **0**0010010.1100 12-bit (1 sign bit)
 - Bits to the left of the "Binary Point"; Powers of 2
 - Bits to the right of the "Binary Point"; Powers of $\frac{1}{2}$
 - -255 to 255 (7 significant bits for magnitudes above ± 4)
- Floating Point (scientific notation)
 - 0.1875*10² decimal floating point
 - 0.001100 * 2⁰⁰⁰¹⁰ 12-bit Binary (2 sign bits) (1/8 + 1/16)*2²
 - 7 significant bits; $\pm 2^{-15}$ (1/32768) to $\pm 2^{+15}$ (32768)

PC Boot Sequence

- ROM-based routines
 - Power-on System Test (POST)
 - Bootstrap: Go to Disk (boot sector) to start the OS
 - Basic Input Output Sequences (BIOS)
 - Hardware specific operations
 - Used by the Operating system (in MSDOS used directly by application software)
- Operating System (OS): Windows, Linux, Mac (OSX) etc.
 - Provides environment for applications (API)
 - Resource Sharing: Multitasking, Virtual Memory

Memory Hierarchy

- Registers: directly used by CPU
- Cache: Fast, local, temporary storage
 - L1: same speed as the CPU; small size (only 16 Kbytes in old PCs)
 - L2: somewhat slower; somewhat larger (Not often present)
- Core Memory: Originally magnetic cores (toroids)
 - Dynamic silicon RAM
 - Fast Page Mode (FPM) DRAM: old early 1980s; PC XT; 8088
 70 ns; 36 pin SIMM : byte-wide data or 72 pin: wider data path
 - EDO DRAM: "486" (60 ns; 72 pin SIMM or DIMM)
 - SDRAM (DDR): Pentium (10ns to 5 ns-pc3200)
- Secondary Storage: Disk (cache memory in fast disks; 1-2 Mbytes)
 - Access time (Read/Write head speed)
 - Write speed (rotation rate; 5000, 7500, 10k rpm)

Section 9 Schedule

Session 9a (5/26 – Holiday)	05/21	Introduction: Computer Overview	Capron: Ch 1; Notes
Session 9b	05/28	The CPU - Central Processing Unit	Capron: Ch 2;
Session 9c	06/02	I/O	Capron: Ch 3;
Session 9d	06/04	Data Storage	Capron: Ch 4;
Session 9e	06/09	Digital I/O: Serial, Parallel, IDE, SCSI, USB, and Firewire	Bigelow: pp. 285-288, 301-305; Notes
Session 9f (Lab - 06/14, Sat.) (Quiz 9 due 06/15)	06/11	Review for Quiz 9	
Session 9g (6/18 – no class)	06/16	Quiz Results	