Sine Waves and Vectors

Math Session for Basic Electricity A Fairfield University E-Course Powered by LearnLinc

Basic Electricity

Two Sections

- Electron Flow and Resistance
 - 5 on-line sessions
 - Lab
- Inductance and Capacitance
 - 5 on-line sessions
 - Lab

Mastery Test, Part 1

Basic Electricity (Continued)

- Text: "Electricity One-Seven," Harry Mileaf, Prentice-Hall, 1996, ISBN 0-13-889585-6 (Covers several Modules and more)
- References:
 - "Digital Mini Test: Principles of Electricity Lessons One and Two," SNET Home Study Coordinator, (203) 771-5400
 - Electronics Tutorial (Thanks to Alex Pounds)
 - Electronics Tutorial (Thanks to Mark Sokos)
 - <u>Basic Math Tutorial</u> (Thanks to George Mason University)
 - Vector Math Tutorial (Thanks to California Polytec at atom.physics.calpoly.edu)

Section 2:

AC, Inductors and Capacitors

• **OBJECTIVES**: This section introduces AC voltage / current and additional circuit components (inductors, transformers and capacitors).

Section 2 Schedule:

Session 2a — 03/27	Alternating Current & Sine Waves	Text 3.1 – 3.41
Vector Math – 04/01	Sine Waves, Magnitude, Phase and Vectors	Text 4.1 – 4.24
Session 2b $-04/03$	Inductors and Circuits	Text 3.42 – 3.75
Session 2c $-04/08$	Transformers	Text 3.76 – 3.100
Session 2d - 04/10 (lab - 04/13, Sat.)	Capacitors	Text 3.101 – 3.135
Session 2e $-04/15$	More Capacitors	Text 3.135 – 3.148
Session 2f - 04/22 4/1/2002	Review (Discuss Quiz_2) Basic Electricity	5

Session 2a Review

3

2

-1

-2

-3

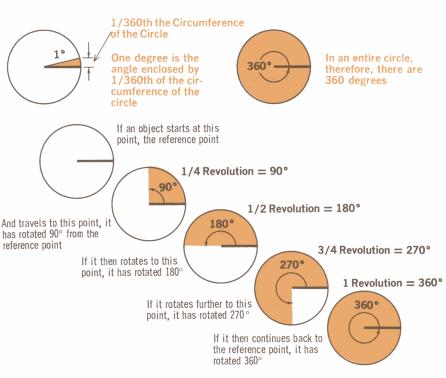
180°

90° 135°

Degree of Rotation

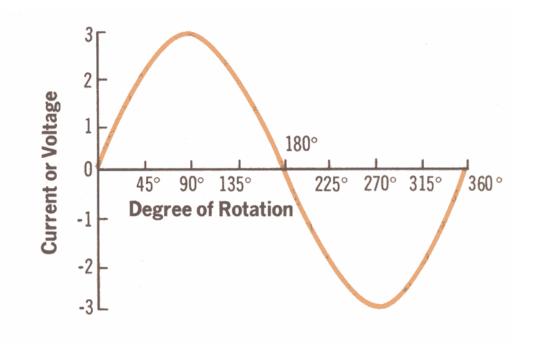
45°

225° 270° 315°


360°

Current or Voltage

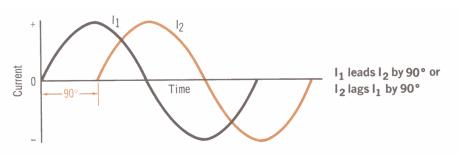
- AC vs. DC
- Transformers
- Ohm's Law
- AC Generators
- Sine Waves $-\sin(2\pi ft + \theta)$
- Frequency, Period, Wavelength and Magnitude
- Phase Angle
- Averages
 - Mean (DC)
 - RMS (Effective Value)


Angle: Degrees and Radians

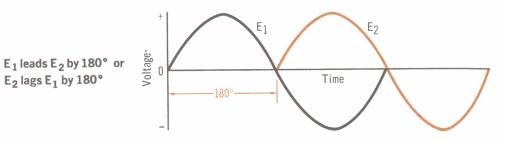
- Degrees, minutes and seconds
 - 360° gets you around a circle
 - Invented by map makers in the middle ages
 - Reused for Time measurements
- Radians (in calculators)
 - $2 * \pi$ or 2 * 3.14159 gets you around a circle
 - The real angle measure
 - The distance traveled around the perimeter of a "unit" circle (r = 1)

Sine Waves and Angle

- V = 3*sine (angle)
 - Sine often shortened to sin [V = 3*sin(angle)]
 - 3 is the "Amplitude"
 - Starts at zero
 - Peak (3) at 90°($\pi/2$)
 - Zero again at $180^{\circ}(\pi)$
 - Negative Peak (-3) at 270°(3*π/2)
 - Zero to Finish the
 "Cycle" at 360°(2*π)



Phase Difference


- Waveforms can be "out of phase"
- Note:

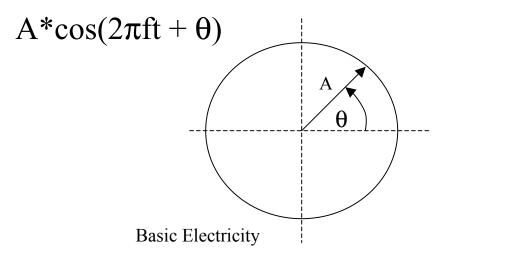
 $sin(2\pi ft - \pi/2) = cos(2\pi ft)$ Cosine is the full name

- Starts at 1 at t = 0
- Looks just like sine but at a different phase

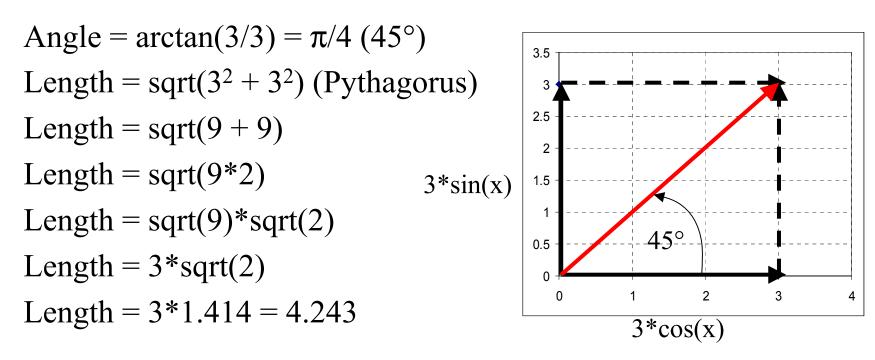
When maximum and minimum points of one voltage or current occur before the corresponding points of another voltage or current, the two are out of phase. When such a phase difference exists, one of the voltages or currents leads, and the other lags

Adding Two Sine Waves

Adding two sine waves at the same frequency but different phases results in a sine wave with the same frequency, new amplitude, and new phase


Angle (in radians)

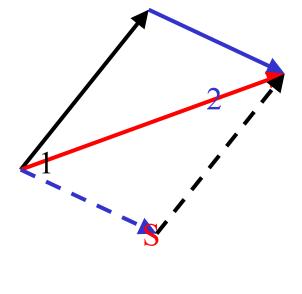
The result is a sine wave at 45° ($\pi/4$) with an amplitude of 1.414 (the square root of 2)

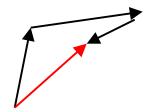

Basic Electricity

The Vector Analogy

- We can make the task of adding sine waves with the same frequency easier using vectors
- Treat a sine wave with Amplitude "A" and phase θ as a vector of length "A" at an angle of θ (the frequency is implicit) note: by convention cos(2πft) has a zero angle

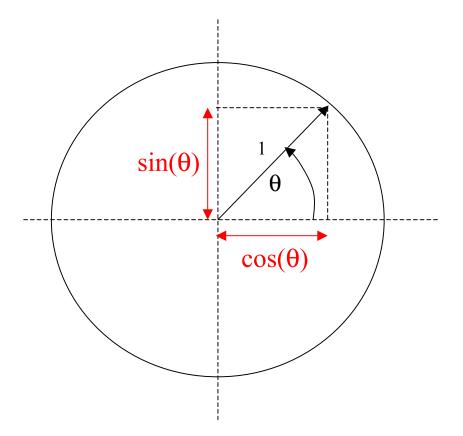
Adding Sine and Cosine: Using Vectors

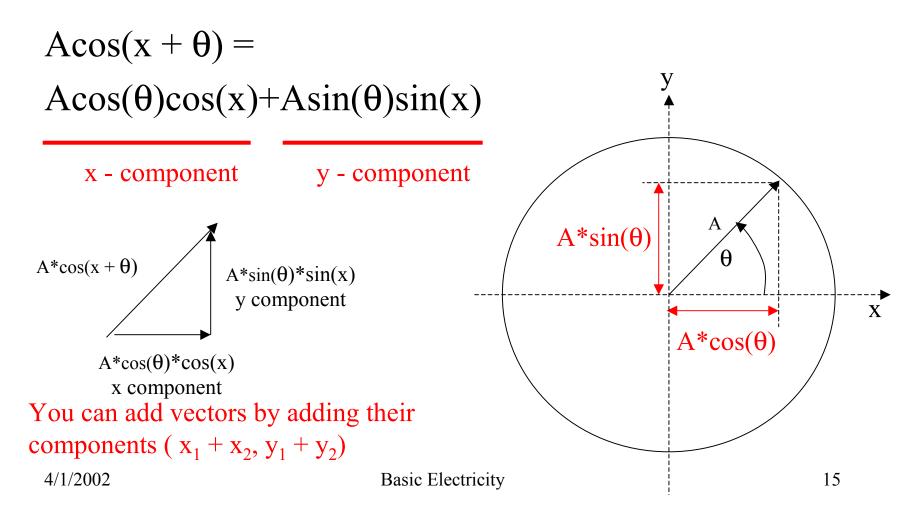



 $Sum = 4.243 * cos(x + 45^{\circ})$

Basic Electricity

Adding Vectors: Head-to-Tail, Parallelogram


- Head-to-Tail Method
 - Redraw vectors so that one starts where the other ends
 - Draw the sum vector from the free tail to the free head.
 - Good for multiple vectors
- Parallelogram Method
 - Complete the parallelogram
 - The sum is the diagonal of the Parallelogram



Vectors and Trig: The Unit Circle

- $sin(\theta) = opposite/hypotenuse$
- $\cos(\theta) = adjacent/hypotenuse$
- $tan(\theta) = opposite/adjacent$
- $\theta = \arcsin(\text{opposite/hypotenuse})$
- $\theta = \arccos(\text{adjacent/hypotenuse})$
- $\theta = \arctan(\text{opposite}/\text{adjacent})$
- Remember, if your calculator is in: degree mode - θ is in degrees radian mode - θ is in radians

Vector Components (Cartesian)

Adding Vectors by Components p. 4-16

- V1=4∠75°, V2=2∠45°, V3=3∠30°
- X components
 - $V1x = 4*\cos(75^\circ) = 4*0.2588 = 1.035$ error in book Sign-Magnitude Form
 - $V2x = 2*\cos(45^\circ) = 2*0.7071 = 1.414$ sqrt(2)
 - V3x = 3*cos(30°) = 3*0.866 = 2.6
 - Vtx = 1.035 + 1.414 + 2.6 = 5.05
- Y components
 - $V_{1y} = 4*\sin(75^\circ) = 4*0.966 = 3.86$
 - $V2y = 2*sin(45^\circ) = 2*0.7071 = 1.414$ sqrt(2)
 - V3y = 3*sin(30°) = 3*0.500 = 1.5
 - Vty = 3.86 + 1.414 + 1.5 = 6.77
- Vt = 5.05i + 6.77jwhere i and j are the Cartesian unit vectors $Vt = 8.5 \angle 53^{\circ}$

Changing Component Form into Find the Magnitude $A = \sqrt{(5.05)^2 + (6.77)^2}$ $A = \sqrt{72.3} = 8.5$ Find the Angle $\theta = \arctan(6.77/5.05)$ $\theta = \arctan(1.34)$ $\theta = 0.93$ radians

 $\theta = 0.93 * 180/\pi = 53.3^{\circ}$

Section 2 Schedule:

Session 2a — 03/27	Alternating Current & Sine Waves	Text 3.1 – 3.41
Vector Math – 04/01	Sine Waves, Magnitude, Phase and Vectors	Text 4.1 – 4.24
Session 2b - 04/03	Inductors and Circuits	Text 3.42 – 3.75
Session 2c $-04/08$	Transformers	Text 3.76 – 3.100
Session 2d - 04/10 (lab - 04/13, Sat.)	Capacitors	Text 3.101 – 3.135
Session 2e $-04/15$	More Capacitors	Text 3.135 – 3.148
Session 2f $-04/22$	Review (Discuss Quiz_2)	17
4/1/2002	Basic Electricity	17