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Basic IIR Digital FilterBasic IIR Digital Filter
StructuresStructures

• The causal IIR digital filters we are
concerned with in this course are
characterized by a real rational transfer
function of       or, equivalently by a constant
coefficient difference equation

• From the difference equation representation,
it can be seen that the realization of the
causal IIR digital filters requires some form
of feedback

1−z
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Basic IIR Digital FilterBasic IIR Digital Filter
StructuresStructures

• An N-th order IIR digital transfer function is
characterized by 2N+1 unique coefficients,
and in general, requires 2N+1 multipliers
and 2N two-input adders for implementation

• Direct form IIR filters: Filter structures in
which the multiplier coefficients are
precisely the coefficients of the transfer
function
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

• Consider for simplicity a 3rd-order IIR filter
with a transfer function

• We can implement H(z) as a cascade of two
filter sections as shown on the next slide
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

where
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

• The filter section            can be seen to be
an FIR filter and can be realized as shown
below
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

• The time-domain representation of            is
given by

Realization of
follows from the
above equation
and is shown on
the right
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

• A cascade of the two structures realizing
and            leads to the realization of
shown below and is known as the direct
form I structure
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

• Note: The direct form I structure is
noncanonic as it employs 6 delays to realize
a 3rd-order transfer function

• A transpose of the 
direct form I structure 
is shown on the right
and is called the direct
form I   structuret
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

• Various other noncanonic direct form
structures can be derived by simple block
diagram manipulations as shown below
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

• Observe in the direct form structure shown
below, the signal variable at nodes      and
are the same, and hence the two top delays
can be shared

1 '1
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

• Likewise, the signal variables at nodes
and       are the same, permitting the sharing
of the middle two delays

• Following the same argument, the bottom
two delays can be shared

• Sharing of all delays reduces the total
number of delays to 3 resulting in a canonic
realization shown on the next slide along
with its transpose structure
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Direct Form IIR Digital FilterDirect Form IIR Digital Filter
StructuresStructures

• Direct form realizations of an N-th order IIR
transfer function should be evident
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Cascade Form IIR DigitalCascade Form IIR Digital
Filter StructuresFilter Structures

• By expressing the numerator and the
denominator polynomials of the transfer
function as a product of polynomials of
lower degree, a digital filter can be realized
as a cascade of low-order filter sections

• Consider, for example, H(z) = P(z)/D(z)
expressed as
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Cascade Form IIR DigitalCascade Form IIR Digital
Filter StructuresFilter Structures

• Examples of cascade realizations obtained
by different pole-zero pairings are shown
below
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Cascade Form IIR DigitalCascade Form IIR Digital
Filter StructuresFilter Structures

• Examples of cascade realizations obtained
by different ordering of sections are shown
below
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Cascade Form IIR DigitalCascade Form IIR Digital
Filter StructuresFilter Structures

• There are altogether a total of 36 different
cascade realizations of

based on pole-zero-pairings and ordering
• Due to finite wordlength effects, each such

cascade realization behaves differently from
others
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Cascade Form IIR DigitalCascade Form IIR Digital
Filter StructuresFilter Structures

• Usually, the polynomials are factored into a
product of 1st-order and 2nd-order
polynomials:

• In the above, for a first-order factor
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Cascade Form IIR DigitalCascade Form IIR Digital
Filter StructuresFilter Structures

• Consider the 3rd-order transfer function

• One possible realization is shown below
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Cascade Form IIR DigitalCascade Form IIR Digital
Filter StructuresFilter Structures

• Example - Direct form II and cascade form
realizations of

are shown on the next slide
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Cascade Form IIR DigitalCascade Form IIR Digital
Filter StructuresFilter Structures

Direct form II Cascade form
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Parallel Form IIR Digital FilterParallel Form IIR Digital Filter
StructuresStructures

• A partial-fraction expansion of the transfer
function in        leads to the parallel form I
structure

• Assuming simple poles, the transfer function
H(z) can be expressed as

• In the above for a real pole
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Parallel Form IIR Digital FilterParallel Form IIR Digital Filter
StructuresStructures

• A direct partial-fraction expansion of the
transfer function in z leads to the parallel
form II structure

• Assuming simple poles, the transfer function
H(z) can be expressed as

• In the above for a real pole
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Parallel Form IIR Digital FilterParallel Form IIR Digital Filter
StructuresStructures

• The two basic parallel realizations of a 3rd-
order IIR transfer function are shown below

Parallel form I Parallel form II
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Parallel Form IIR Digital FilterParallel Form IIR Digital Filter
StructuresStructures

• Example - A partial-fraction expansion of

in       yields
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Parallel Form IIR Digital FilterParallel Form IIR Digital Filter
StructuresStructures

• The corresponding parallel form I realization
is shown below



Copyright © 2001, S. K. Mitra26

Parallel Form IIR Digital FilterParallel Form IIR Digital Filter
StructuresStructures

• Likewise, a partial-fraction expansion of
H(z) in z yields

• The corresponding
parallel form II
realization is shown
on the right
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Realization Using MATLABRealization Using MATLAB
• The cascade form requires the factorization

of the transfer function which can be
developed using the M-file zp2sos

• The statement sos = zp2sos(z,p,k)
generates a matrix sos containing the
coefficients of each 2nd-order section of the
equivalent transfer function H(z) determined
from its pole-zero form
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Realization Using MATLABRealization Using MATLAB
• sos is an          matrix of the form

whose i-th row contains the coefficients
and         , of the the numerator and
denominator polynomials of the i-th 2nd-
order section
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Realization Using MATLABRealization Using MATLAB

• L denotes the number of sections
• The form of the overall transfer function is

given by

• Program 6_1 can be used to factorize an
FIR and an IIR transfer function
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Realization Using MATLABRealization Using MATLAB

• Note: An FIR transfer function can be
treated as an IIR transfer function with a
constant numerator of unity and a
denominator which is the polynomial
describing the FIR transfer function



Copyright © 2001, S. K. Mitra31

Realization Using MATLABRealization Using MATLAB

• Parallel forms I and II can be developed
using the functions residuez and
residue, respectively

• Program 6_2 uses these two functions
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Realization of Realization of Allpass Allpass FiltersFilters
• An M-th order real-coefficient allpass

transfer function             is characterized by
M unique coefficients as here the numerator
is the mirror-image polynomial of the
denominator

• A direct form realization of             requires
2M multipliers

• Objective - Develop realizations of
requiring only M multipliers
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Realization Using MultiplierRealization Using Multiplier
Extraction ApproachExtraction Approach

• Now, an arbitrary allpass transfer function
can be expressed as a product of 2nd-order
and/or 1st-order allpass transfer functions

• We consider first the minimum multiplier
realization of a 1st-order and a 2nd-order
allpass transfer functions
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First-OrderFirst-Order Allpass Allpass Structures Structures
• Consider first the 1st-order allpass transfer

function given by

• We shall realize the above transfer function
in the form a structure containing a single
multiplier      as shown below1d
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First-OrderFirst-Order Allpass Allpass Structures Structures

• We express the transfer function
in terms of the transfer parameters of the
two-pair as

• A comparison of the above with

yields
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First-OrderFirst-Order Allpass Allpass Structures Structures

• Substituting               and                  in
                        we get

• There are 4 possible solutions to the above
equation:
Type 1A:
Type 1B:
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First-OrderFirst-Order Allpass Allpass Structures Structures

• Type 1A  :
• Type 1B  :

• We now develop the two-pair structure for
the Type 1A allpass transfer function
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First-OrderFirst-Order Allpass Allpass Structures Structures

• From the transfer parameters of this allpass
we arrive at the input-output relations:

• A realization of the above two-pair is
sketched below
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First-OrderFirst-Order Allpass Allpass Structures Structures

• By constraining the      ,       terminal-pair
with the multiplier     , we arrive at the
Type 1A allpass filter structure shown
below

2X 2Y
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Type 1A
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First-Order First-Order Allpass Allpass StructuresStructures
• In a similar fashion, the other three single-

multiplier first-order allpass filter structures
can be developed as shown below

Type 1B Type 1A t

Type 1B t
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Second-OrderSecond-Order Allpass Allpass
StructuresStructures

• A 2nd-order allpass transfer function is
characterized by 2 unique coefficients

• Hence, it can be realized using only 2
multipliers

• Type 2 allpass transfer function:
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Type 2 Type 2 AllpassAllpass Structures Structures
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Type 3 Type 3 AllpassAllpass Structures Structures

• Type 3 allpass transfer function:
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Type 3 Type 3 AllpassAllpass Structures Structures
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Realization Using MultiplierRealization Using Multiplier
Extraction ApproachExtraction Approach

• Example - Realize

• A 3-multiplier cascade realization of the
above allpass transfer function is shown
below
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• The stability test algorithm described earlier
in the course also leads to an elegant
realization of an Mth-order allpass transfer
function

• The algorithm is based on the development
of a series of            th-order allpass transfer
functions               from an mth-order allpass
transfer function           for
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• Let

• We use the recursion

where
• It has been shown earlier that            is

stable if and only if
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• If the allpass transfer function              is
expressed in the form

then the coefficients of              are simply
related to the coefficients of            through
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• To develop the realization method we
express           in terms of              :

• We realize           in the form shown below
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• The transfer function                         of the
constrained two-pair can be expressed as

• Comparing the above with

we arrive at the two-pair transfer parameters
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• Substituting              and                       in the
equation above we get

• There are a number of solutions for      and

1
2211

−−== zktkt mm,
1

21122211
−−=− ztttt

1
22

−−= zkt mmkt =11

12
2112 1 −−= zktt m )(

21t
12t



Copyright © 2001, S. K. Mitra52

Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• Some possible solutions are given below:
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• Consider the solution

• Corresponding input-output relations are

• A direct realization of the above equations
leads to the 3-multiplier two-pair shown on
the next slide
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• The transfer parameters

lead to the 4-multiplier two-pair structure
shown below
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• Likewise, the transfer parameters

lead to the 4-multiplier two-pair structure
shown below
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• A 2-multiplier realization can be derived by
manipulating the input-output relations:

• Making use of the second equation, we can
rewrite the first equation as
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• A direct realization of

lead to the 2-multiplier two-pair structure,
known as the lattice structure, shown below
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• Consider the two-pair described by

• Its input-output relations are given by

• Define
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• We can then rewrite the input-output
relations as                           and

• The corresponding 1-multiplier realization
is shown below
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• An mth-order allpass transfer function
is then realized by constraining any one of
the two-pairs developed earlier by the        

     th-order allpass transfer function)( 1−m

)(zAm
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• The process is repeated until the
constraining transfer function is

• The complete realization of             based on
the extraction of the two-pair lattice is
shown below
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• It follows from our earlier discussion that
      is stable if the magnitudes of all

multiplier coefficients in the realization are
less than 1, i.e.,             for

• The cascaded lattice allpass filter structure
requires 2M multipliers

• A realization with M multipliers is obtained if
instead the single multiplier two-pair is used
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• Example - Realize
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• We first realize           in the form of a
lattice two-pair characterized by the
multiplier coefficient
and constrained by a 2nd-order allpass
as indicated below
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• The allpass transfer function           is of the
form

• Its coefficients are given by
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• Next, the allpass           is realized as a
lattice two-pair characterized by the
multiplier coefficient
and constrained by an allpass           as
indicated below
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• The allpass transfer function           is of the
form

• It coefficient is given by
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Realization Using Two-PairRealization Using Two-Pair
Extraction ApproachExtraction Approach

• Finally, the allpass           is realized as a
lattice two-pair characterized by the
multiplier coefficient
and constrained by an allpass                as
indicated below

)(1 zA

1)(0 =zA
3573771.0"

11 == dk

,2.03 −=k
,2708333.02 =k 3573771.01 =k
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Cascaded Lattice RealizationCascaded Lattice Realization
Using MATLABUsing MATLAB

• The M-file poly2rc can be used to realize
an allpass transfer function in the cascaded
lattice form

• To this end Program 6_3 can be employed
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