Basic |IR Digital Filter

Structures

 Thecausal |IR digital filterswe are
concerned with in this course are
characterized by areal rational transfer
function of 2 or, equivalently by a constant
coefficient difference equation

* From the difference eguation representation,
It can be seen that the realization of the

causal |IR digital filters requires some form
of feedback
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Basic |IR Digital Filter
Structures

 An N-th order |IR digital transfer function is
characterized by 2N+1 unique coefficients,
and in general, requires 2N+1 multipliers
and 2N two-1nput adders for implementation

e Direct form |IR filters: Filter structuresin
which the multiplier coefficients are

precisely the coefficients of the transfer
function
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Direct Form |IR Digital Filter
Structures

e Consider for ssmplicity a 3rd-order IR filter
with atransfer function

H (2) = P(z) po+ plz_1+ pzz_2 + p3z_3
D(Z) 1+ dlz_l -+ d22_2 -+ d32_3

* \We can implement H(z) as a cascade of two
filter sections as shown on the next slide
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Direct Form |IR Digital Filter
Structures

X(2) — Hy(2) M H,(2) —Y(2)

where

W(z _ _ _

H1(2)=X8 = P(2)= po+ Pz + PpZ 2+ pgZ >
Y(z) 1 1

H /)= """ = — — =

2(2) W(z) D(2) 1+dizt+d,z %+daz 3

Copyright © 2001, S. K. Mitra



Direct Form |IR Digital Filter
Structures

* Thefilter section H,(z) can be seen to be
an FIR filter and can be realized as shown
below

wWn] = poX{n] + pp{n—1] + poX{n—2] + p3x{n—3]
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Direct Form |IR Digital Filter
Structures

e Thetime-domain representation of H,(2) IS
given by

y[n] =win]—dyy[n—-1 —dyy[n—2] - d3y[n—3]
Redlization of Hy(z)  wa
follows from the
above equation

and Is shown on
the right
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Direct Form |IR Digital Filter
Structures

A cascade of the two structures realizing H4(z)
and H,(2) leads to the realization of H(2)
shown below and is known as the dir ect
form | structure
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Direct Form |IR Digital Filter
Structures

 Note: Thedirect form | structureis
noncanonic as it employs 6 delaysto realize
a 3rd-order transfer function

. A transpose of the 1 I
direct form | structure 1 4, b [
IS shown on the right é_ﬁ' Hbf@
and is called the dir ect ¢ D¢
form It structure gl LS
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Direct Form |IR Digital Filter

Structures

 Various other noncanonic direct form
structures can be derived by simple block
diagram manipulations as shown below
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Direct Form |IR Digital Filter
Structures

e Observe in the direct form structure shown
below, the signal variable at nodes@ and @
are the same, and hence the two top delays
can be shared

—® ! I"D—'@_'
1 -1
4 4
CTHH@’ ®H>—-§+)
—1 1
8
dz ~

s

- P
0 @ @ o
E_l Z_l
@ @ Copyright © 2001, S. K. Mitra




Direct Form |IR Digital Filter

Structures

 Likewise, the signa variables at nodes(2)
and (@ are the same, permitting the sharing
of the middle two delays

* Following the same argument, the bottom
two delays can be shared

e Sharing of all delays reduces the total
number of delaysto 3 resulting in a canonic
realization shown on the next slide along
with Its transpose structure
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Direct Form |IR Digital Filter
Structures

e Direct form realizations of an N-th order IR
transfer function should be evident
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Cascade Form lIR Digital
Filter Structures

e By expressing the numerator and the
denominator polynomials of the transfer
function as a product of polynomials of
lower degree, adiqgital filter can berealized
as a cascade of low-order filter sections

e Consider, for example, H(z) = P(2)/D(2)
expressed as

H(Z):@: PZL(Z)PZ(Z)PS(Z)
D(2) Dy(2)D,(2)Ds(2)
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Cascade Form lIR Digital
Filter Structures

e Examples of cascade realizations obtained
by different pole-zero pairings are shown

below

() E(2) P(2) B(2) Py(2) P(2)

o ' —+] ¥ — —
D(2) D,(2) Dy (2) D,(2) D5(2) D(2)
A(z) P (2) P.(2) () F (2) P ()

o b —| o —H —+
Dy(z) Dy(2) D, (2) D,(z) D (z) Dy(z)
) A(2) | Py (2) - E,(2) ) R(z) - E(z) - P(2)
D (2) Dy (2) D,(z) Dy(2) D,(z) D (2)

14
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Cascade Form lIR Digital
Filter Structures

e Examples of cascade realizations obtained
by different ordering of sections are shown
below

P (z) P(2) F(2) R (2) P (2) Py(2)

— } — —+] —
D(2) D,(z) Dy (2) Dy(2) Dy (2) D,(2)
Py(2) H() P (2) By (2) P (2) P(2)

— b —+ —H —
D,(2) D (z) Dy(2) D,(2) Dy(2) Dy(2)
) K@ | R - By(2) , E(2) - B(2) - K ()
Dy(2) | | D(2) D, (2) Dy(2) D,(z) Di(z)

15

Copyright © 2001, S. K. Mitra




Cascade Form lIR Digital
Filter Structures

 There are altogether atotal of 36 different

cascade realizationzc, g)f P2
_ B(2)P(2)P(z
H(2)= D1(2)D,(2)D3(2) |
based on pole-zero-pairings and ordering
* Dueto finite wordlength effects, each such
cascade realization behaves differently from

others

16 Copyright © 2001, S. K. Mitra



Cascade Form lIR Digital
Filter Structures

o Usually, the polynomials are factored into a
product of 1st-order and 2nd-order
nolynomials:

-1
H(Z) pOH 1+181kz +182kz 2)

k 1+ OllkZ l-I-OleZ

e |nthe above, for afirst-order factor
ook = Pok =0
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Cascade Form lIR Digital
Filter Structures
e Consder the 3rd-order transfer function

H(2) = po(lﬂﬁnzlj( L+ B1oZ "+ fopZ 2 j

e One possible realization is shown below

Py

X}»@»@—(+}_%T»@»P
D eEE DR
11 11 2
<0

22 22
18 Copyright © 2001, S. K. Mitra



19

Cascade Form lIR Digital
Filter Structures

e Example- Direct form |l and cascade form
real1zations of
0.447 1403627 2+0.022°
H(2) = 1 2 3
1+0.4z ~+0.18z --0.2z2
[ 0.44+0.362271+0.02272 71
1+0.87 140572 1-0.4771

are shown on the next slide
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Cascade Form lIR Digital
Filter Structures

Direct form |1

0.4

Cascade form
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Parallel Form |IR Digital Filter
Structures

o A partial-fraction expansion of the transfer

functionin 2z leadsto the parallel form |
structure

o Assuming simple poles, the transfer function
H(Z) can be expressed as

-1
H(Z)=7/0+Z( ?/OkJF17/1kZ 2)
k

1—|—0(1k zZ Tk Z

* Intheabovefor areal pole oy =71 =0

Copyright © 2001, S. K. Mitra
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Parallel Form |IR Digital Filter
Structures

* A direct partial-fraction expansion of the
transfer function in z leads to the parallel
form |l structure

e Assuming simple poles, the transfer function
H(Z) can be expressed as

H(2) = 5O+z( S0 +557 2)

1—|—0[1k Z Tk Z

* Intheabovefor areal poleay =09 =0

22 Copyright © 2001, S. K. Mitra



Parallel Form |IR Digital Filter

Structures

e Thetwo basic parallel realizations of a 3rd-
order IR transfer function are shown below

Tﬂ aﬂ
-..r\\ l-r\\-
Vv Vv

Parallel form | Pardlel form 11
23 Copyright © 2001, S. K. Mitra



Parallel Form |IR Digital Filter
Structures
 Example - A partial-fraction expansion of

0.447140.3627 2+0.0273

H(z)=
(2) 1+0.427140.1827%2-0.27"°
in z1yields

-1
H(2) = —0.1+ 06  -05-02z

1-04z1  1+08z1+05772

24 Copyright © 2001, S. K. Mitra
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Parallel Form |IR Digital Filter
Structures

* The corresponding parallel form | realization
IS shown below

Copyright © 2001, S. K. Mitra



Parallel Form |IR Digital Filter
Structures

o Likewise, apartial-fraction expansion of
H(z) in zyields
024z1 02z1+025771
H (Z) — 1 T 1 ) 0.4 0.24
1-0.4z 1+0.8z "+0.5z £

e The corresponding
parallel form ||
realization is shown
on the right
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Realization Using MATLAB

* The cascade form requires the factorization
of the transfer function which can be
developed using the M-filezp2sos

 Thestatement sos = zp2sos( z, p, k)
generates amatrix sos containing the
coefficients of each 2nd-order section of the
equivalent transfer function H(z) determined
from its pole-zero form

27 Copyright © 2001, S. K. Mitra



Realization Using MATLAB

e SOS ISan L x 6 matrix of theform

Por P11 P2y dpp dyp dpp
sos—|Po2 P12 P22 o2 dip dy

_péL piL péL déL diL déL_

whose i-th row contains the coefficients{ p;,}
and {d;,}, of the the numerator and

denominator polynomials of the i-th 2nd-
23 Order section
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Realization Using MATLAB

e | denotesthe number of sections

e Theform of the overall transfer function is
given by
Poi + BiiZ 14 P2 Z
H(z H:(z
() H () 1:!]:_dol+dllz -|—d2|

. Program 6_1 can be used to factorize an
FIR and an | IR transfer function

29 Copyright © 2001, S. K. Mitra
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Realization Using MATLAB

* Note: An FIR transfer function can be
treated as an | IR transfer function with a
constant numerator of unity and a
denominator which is the polynomial
describing the FIR transfer function

Copyright © 2001, S. K. Mitra
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Realization Using MATLAB

e Parallel forms| and Il can be developed
using the functionsr esi duez and

r esi due, respectively
* Program 6_2 uses these two functions

Copyright © 2001, S. K. Mitra
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Realization of Allpass Filters

 An M-th order real-coefficient allpass
transfer function Ay, (2) Is characterized by
M unique coefficients as here the numerator
IS the mirror-image polynomial of the
denominator

* A direct form realization of Ay (z) requires
2M multipliers

» Objective - Develop realizations of Ay, (2)
requiring only M multipliers
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Realization Using Multiplier
Extraction Approach

 Now, an arbitrary allpass transfer function
can be expressed as a product of 2nd-order
and/or 1st-order allpass transfer functions

* \We consider first the minimum multiplier
realization of a 1st-order and a 2nd-order
allpass transfer functions

33 Copyright © 2001, S. K. Mitra



First-Order Allpass Structures

o Consider first the 1st-order allpass transfer
function given by
d+z

Al2)= 1+ dlz_1

e \WWe shall realize the above transfer function
In the form a structure containing a single

multiplier d; as shown bel \?w
2

) dl
Yl

X2

1
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First-Order Allpass Structures

* We express the transfer function Ay«(z) =Y,/ X4
IN terms of the transfer parameters of the

two-pair as
_ tota10y  ty1—dy(tgton —tyotog)
A(Z) =1, + =

o A comparison of the above with
dy+z
: Al(z) B 1+1d z 1
yields 1
-1 -1
11=2 7ty ==2Z 7, gty —lyplyy =1
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First-Order Allpass Structures

+ Substituting ty; = z tand tyy =—z in
11lor — 1ol =—1 we get
t12t21 =1-— 2_2

e There are 4 possible solutions to the above
equation:

1A ty1 =7 too=—7Z L to=1-72 to=1
YP 11 22 12 21

ype 1B:
tll = Z_l, t22 = —Z_l, t12 =1+ Z_l, t21 =1-7

1
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First-Order Allpass Structures

e Type 1B;:
t1q = -1 _ -1 . -1 . —
11= <% ,t22——Z ,t12—1—Z , t21—1-|-Z

1

e \We now develop the two-pair structure for
the Type 1A allpass transfer function
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First-Order Allpass Structures

* From the transfer parameters of this allpass
we arrive at the input-output relations:

Y, = X, —Z X,
Y, =ZX+(1- Z%) X5 =25 + X5
o A redlization of the above two-pair is
sketched below

—1
X, e Y,
-1 2

—1
Z

X
38 Sl G | |
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First-Order Allpass Structures

» By constraining the X,, Y, terminal-pair
with the multiplier d;, we arrive at the
Type 1A allpass filter structure shown
below

—1
LS B A 72 ““ ®—> 7
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First-Order Allpass Structures

* Inasimilar fashion, the other three single-
multiplier first-order allpass filter structures
can be developed as shown below
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Second-Order Allpass
Structures

o A 2nd-order allpass transfer function is
characterized by 2 unique coefficients

* Hence, It can berealized using only 2
multipliers

o Type 2 dlpass transfer function:
d.d,+d,z1+z2
Af2)= +2 1 -
1+ dlz + dldzz

41 Copyright © 2001, S. K. Mitra
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Type 2 Allpass Structures

Copyright © 2001, S. K. Mitra
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Type 3 Allpass Structures

ype 3 allpass transfer function:
1, -2

Ay(2) = d2+dlf +Z :
1+dyz “+dyz

Copyright © 2001, S. K. Mitra



Type 3 Allpass Structures

Copyright © 2001, S. K. Mitra



Realization Using Multiplier
Extraction Approach

 Example - Realize
—0.2+0.187 1 +0472%+773
Ag(2) =

1+0.47214+0.18272-0.273
_ (-0.4+z71)(05+08271+77%)

(1-0.4z 1)(1+0.82 1+0.52%)
o A 3-multiplier cascade realization of the
above allpass transfer function is shown
below

71 (F— oUT

G
IN 7! :
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Realization Using Two-Pair
Extraction Approach

o The stability test algorithm described earlier
IN the course also leads to an elegant
realization of an Mth-order allpass transfer
function

e The algorithm is based on the development
of aseries of (m—1)th-order allpass transfer
functions A,_1(z) from an mth-order allpass
transfer function A,(z) form=M,M -1,...1

46 Copyright © 2001, S. K. Mitra



Realization Using Two-Pair
Extraction Approach

e Let _ _
Am(z) _ dy+dy 12 1+dm—22

10z M doz %4 tdy gz (M pd 27
e \WWe use the recursion

A 1(2)= Z[lﬁ(r:k;lz?)]’ m=M,M-1...1
where K, = Ap(©) =d,
e |t has been shown earlier that Ay (2)1s
stable if and only if
k2 <1 form=M,M -1...1

Copyright © 2001, S. K. Mitra
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Realization Using Two-Pair
Extraction Approach

e |f the allpass transfer function A,,_1(2) IS
expressed in the form

An-1(2) = m_1+d

1+dlz +++dp_0Z

then the coefficients of A,,_1(z)are ssimply
related to the coefficients of A, (z) through

di'—d ~ A 2”‘— 1<i<m-1
1-d*

oz tetdiz (M2 7 (MD)
M2y, g (D
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Realization Using Two-Pair
Extraction Approach

e To develop the realization method we
express A, (z) intermsof A, 1(2):

km+Z " An-1(2)

1+ Kz TAL 1(2)

 Weredize A, (2)in the form shown below

An(2) =

g

o Al

Vi

[

b1 t12:|
oy o] |

Y2

Am—ll( 2)

X2
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Realization Using Two-Pair
Extraction Approach

» Thetransfer function A (z) =Y;/X; of the
constrained two-pair can be expressed as

A (2) = 11— (tiatoo—totr1) A1(2)
1-tooApa(2)

o Comparing the above with

knt+2Z 1A, 1(2)
7) =M 1
An(2) 1+ Kz TAL 1(2)
we arrive at the two-pair transfer parameters

50 Copyright © 2001, S. K. Mitra



Realization Using Two-Pair
Extraction Approach

-1
1 = km’ I =— kmZ

1
liqtor —oloy =—2

e Substituting ty1 =kpandty, = - kmz‘1 In the
equation above we get
-1
oty = (1-km)Z
* There are anumber of solutionsfor t;, and
{1

o1 Copyright © 2001, S. K. Mitra



Realization Using Two-Pair
Extraction Approach

e Some possible solutions are given below:
-1 -1 2
1 =Km to=—KnZ 7~ tp =27, ty =1-ky,

ti =Kme tor =—KmZ , tip = (1—Kp)Z 7, tyy =1+ Ky,

tll = km, t22 = — kmz_l, t12 = \/1— k2 Z_l, t21 = Jl— k2

ti1 =K top = —KmZ T, tio = (1-K3)Z T, thy =1

o2 Copyright © 2001, S. K. Mitra



Realization Using Two-Pair
Extraction Approach
e Consider the solution
tig =K, tp =—kmZ ™, tip =(1-k5)Z ", tpy =1
. Correspondl ng Input- output relations are
= kX1 —(1-k2)Z X,
Y2 = Xy —kZtX,

* A direct realization of the above eguations
leads to the 3-multiplier two-pair shown on
the next slide
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Realization Using Two-Pair
Extraction Approach

-k

e Thetransfer parameters
-1 -1
t1g =Kmi too =—Knz 7 tip =(1-K)Z 7, o1 =1+ kn,
lead to the 4-multiplier two-pair structure
shown below ) Ltk

1 Fz

Y e X;
-k, Copyright © 2001, S. K. Mitra
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Realization Using Two-Pair
Extraction Approach

o Likewise, the transfer parameters

-1 2 _-1 2
tiy =Ko top = —kmZ & tip = 1-kaz %, tyy = | 1- k3
lead to the 4-multiplier two-pair structure
shown below
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Realization Using Two-Pair
Extraction Approach

o A 2-multiplier realization can be derived by
mani puI ating the input- output relations;

=k X; — (1-k2)Z X,
Y2 = X, —kZ X,
« Making use of the second equation, we can
rewrite the first equation as
Y, =k Yo+ Z1X5

o6 Copyright © 2001, S. K. Mitra



Realization Using Two-Pair
Extraction Approach

e A direct realization of
Y, =k Yo+ Z1X5
Y, = Xy —knz X,
lead to the 2-multiplier two-pair structure,
known as the lattice structure, shown below

X

) » » 1,
_km
Ko

Ne— X

S/ Copyright © 2001, S. K. Mitra




Realization Using Two-Pair

Extraction Approach

e Consider the two-pair described by

tig =Km, tor =—KmZ 5 tip = (1-kp)Z 7, thy =1+Kp,

o |tsinput-output relations are given by
Y =k X+ (L—k)Z X5
Y, = @+ k) Xq — knz X5

e Define
Vi = k(X1 =27 X,

o8 Copyright © 2001, S. K. Mitra



Realization Using Two-Pair
Extraction Approach

* \We can then rewrite the input-output
relationsasY; =V, + z 1X, and Yo = X1+Vy

e The corresponding 1-multiplier realization
IS shown below
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Realization Using Two-Pair
Extraction Approach

e An mth-order allpass transfer function Ay(2)
IS then realized by constraining any one of
the two-pairs developed earlier by the
(m—-21th-order allpass transfer function Ay,_1(2)

X'l + o }rﬁ
_km y
Apq(2)
ki
Y, T — 1k %2
1 g
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Realization Using Two-Pair

Extraction Approach

e The processisrepeated until the
constraining transfer function is Ay(z) =1

* The complete realization of Ay (2) based on
the extraction of the two-pair latticeis
shown below

+ , D T .
_kM _kM—l _kl
A7) —
M%< ky, kM—l ky
1 i ) PR -1
A A A
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Realization Using Two-Pair
Extraction Approach

o |t followsfrom our earlier discussion that
Ay (2) is stable if the magnitudes of all
multiplier coefficients in the realization are
lessthan 1, I.e., |ky|<1lform=M,M -1,...1

* The cascaded lattice allpass filter structure
requires 2M multipliers

o A realization with M multipliersis obtained if
Instead the single multiplier two-pair is used

62 Copyright © 2001, S. K. Mitra
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Realization Using Two-Pair
Extraction Approach
 Example - Realize

~02+018z1+04z%+273
1+0.4271+0.18272-0.2z3

Ag(2) =

Cdy+dyz i+ diz e+ 23
1+ d;z 1+ dyz7 2+ dgyz 3
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Realization Using Two-Pair
Extraction Approach

o Wefirst realize Ag(z) intheform of a
|attice two-pair characterized by the
multiplier coefficient kg = d3y =-0.2
and constrained by a 2nd-order allpass A,(z)
as Indicated below

P
_kB =
Az(z)— ' As(2)
3
—O——]
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Realization Using Two-Pair
Extraction Approach

e Theallpasstransfer function A,(2) is of the
form

Ar(2) = d2+.dlz_l+.z_2
1+d;z 1+dyz72
o Its coefficients are given by

1-dZ 1-(~0.2)
1-d3 1-(~0.2)
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Realization Using Two-Pair
Extraction Approach

* Next, theallpass A,(z) Isrealized as a
|attice two-pair characterized by the
multiplier coefficient k, = d, = 0.2708333
and constrained by an allpass A(z) as
Indicated below

ky =-0.2, kp=0.2708333
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Realization Using Two-Pair
Extraction Approach

» Theallpasstransfer function A,(z) Is of the

form T
di+2z
A.I.(Z) — 1 L _1
1+d,z
o It coefficient Is given by
q - d;-dyd;  d;  0.4541667

171 (dy)2  1+d, 12708333 0.3573771
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Realization Using Two-Pair
Extraction Approach

e Finaly, the allpass A(z) Isrealized asa
|attice two-pair characterized by the
multiplier coefficient k; = d; = 0.3573771
and constrained by an allpass Aj(z) =1as
Indicated below

T :W3 D P
ka i, &y
As(z)— " ﬁZ&< le :|—|
Xﬂ FNm E N,

53 1
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Cascaded Lattice Realization
Using MATLAB

 The M-filepol y2r ¢ can be used to realize

an allpass transfer function in the cascaded
lattice form

e Tothisend Program 6 3 can be employed

69 Copyright © 2001, S. K. Mitra



	Basic IIR Digital Filter Structures
	Basic IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Direct Form IIR Digital Filter Structures
	Cascade Form IIR Digital Filter Structures
	Cascade Form IIR Digital Filter Structures
	Cascade Form IIR Digital Filter Structures
	Cascade Form IIR Digital Filter Structures
	Cascade Form IIR Digital Filter Structures
	Cascade Form IIR Digital Filter Structures
	Cascade Form IIR Digital Filter Structures
	Cascade Form IIR Digital Filter Structures
	Parallel Form IIR Digital Filter Structures
	Parallel Form IIR Digital Filter Structures
	Parallel Form IIR Digital Filter Structures
	Parallel Form IIR Digital Filter Structures
	Parallel Form IIR Digital Filter Structures
	Parallel Form IIR Digital Filter Structures
	Realization Using MATLAB
	Realization Using MATLAB
	Realization Using MATLAB
	Realization Using MATLAB
	Realization Using MATLAB
	Realization of Allpass Filters
	Realization Using Multiplier Extraction Approach
	First-Order Allpass Structures
	First-Order Allpass Structures
	First-Order Allpass Structures
	First-Order Allpass Structures
	First-Order Allpass Structures
	First-Order Allpass Structures
	First-Order Allpass Structures
	Second-Order Allpass Structures
	Type 2 Allpass Structures
	Type 3 Allpass Structures
	Type 3 Allpass Structures
	Realization Using Multiplier Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Realization Using Two-Pair Extraction Approach
	Cascaded Lattice Realization Using MATLAB

