The Fourier Transform

Derivation
Assume that we have a generalized, time-limited pulse centered at t = 0 as shown below.
f(t)
.
I .
2T T 0 T 2T

The Fourier Transform of this pulse can be developed by starting with a periodic version of this pulse
where the original pulse now repeats every T seconds.

f(t)

2T T 0 T 2T

Note:

Ilm fT (t) = f(t)
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fr(t) is periodic with period T so we can express it by its exponential Fourier series as

HOEDYATIE

where
172
=— j f(t)* & "t
T,
and

0y =27/

Now let’s make a small change in notation

2. F(on) = T*F,

We now have
¥
13 jo f (t)* & "dt
f.t)==) F(o,)*e'" I
! T n;o and -

The sum can be rewritten as
@, = :

f.t)==—> F(w,)*e '

(0=52 Y F(@)

or

1 0
fr(t)=——> F(w,)*e'"
() 2 2 (@,)* ¢

Taking the limitas T—— o

IIim f(t)—f(t)——llm[ZF(w)* o }

T——>owln=

But wo = 27/T so for large T let @g —>Aw and the limit becomes

f(t)—2— lim {ZF(Q, )*& Jtha):|

T——>ooln

or since T—— oo implies that A — 0 and the sum, in the limit, becomes an integral
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() =§_jf(w )*& ™ do L F@= [0
This pair of equations defines the Fourier Transform

1. F(w) is the Fourier Transform of f(t)

2. f(t) is the inverse Fourier Transform of F(w)

3. F(w) is also called the Spectral Density of f(t) as it describes how the energy of the original
pulse is distributed as a function of frequency (in radians per second)

I use a backwards upper case script “F” to denote taking the Fourier Transform of a function and the
same symbol with a “-1”” superscript to denote taking the inverse Fourier Transform.
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Example 1
Take the Fourier Transform of the single-sided exponential

f(t)=U(t)*exp(-at)

F(o)= [UM)*& e dt
F(w) = J‘g*atg*"‘”tdt
0

00

F(w) =&t

0

F@) =———*g @[
a+ jo 0
Fo)=—
a+ jo

Note that the Fourier Transform is complex. It has a magnitude and a phase. The magnitude is found by
multiplying it by its complex conjugate and taking the square root.

a+ Jo a-jw
1
|F(a))|2 = a2 + >
1
[F (o)) =

va® +® This is the magnitude
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Now find the phase. First, find the real and imaginary parts.

1

F(w)=—
a+ jo

1 ,a-jo
a+jo a-jo

F(w)=

a—jo a jo
F(w) = 2 2 .2 2 .2 2
a +w a +w a +w

Therefore the real part is

a
a’+w®

Re[F (v)]=

and the imaginary part is

—w
a + w?

Im[F (w)]=

The phase is then given by
0 =tan™ Im[F ()] = —tanl[g}
Re[F (w)] a

Note: The ArcTan function of your calculator can lie! Its answers always fall
between £90 ° (x17/2) and the real answer can be in one of the other two
guadrants. You should draw a picture to adjust your result as required.
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Singularity Functions

We run into special functions when taking the Fourier Transform of functions that have infinite energy.
The first of these special functions is the Delta Function

o) = lim G.()
Where G,(t) is any function from the set of all functions having the properties

wG t)dt =1
. _[&”

lim G.(t)=0
. e—ow Forallt=0
Sifting Property of the Delta Function

Integrating the product of the Delta Function with a “well-behaved” function results in “sampling” the
“well-behaved” function at the time that the Delta Function goes to infinity. Or

f(t,) if a<ty<b

T f(t)* ot —t,)dt =

0 eleswhere

Proof
Use Integration by parts

iu AV () =U @V (1), -Tv (t)dU (t)

Iiet U(t) = f(t) and dV(t) = aB(t-to)dt
Tf(t)*&(t—to)dt = f (U (t—t0)|2 —T f'(t)*U (t)dt
Case 1: a<tp<b a

if(t)*a(t—to)dt - f(b)—O—T f(t)*U (t)dt
F(O)*a(t—t,)dt = (o) - f V),

f(O)*o(t —t,)dt = f (b)— f (b) + F(t,)

T O m—T D ——T

jf(t)*a(t-to)dt = f(t,)
2 Q.E.D

Case 2: tg<aorty>h

b b
[ f®)*a(t—t,)dt =0-0—[odt =0
a a Q.ED
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Example 2
Take the Fourier Transform of a constant

f(t)=A

F(w) = jAgiw‘dt

Here the integral can’t be directly computed, we have to approach it as a limiting case. Let’s replace the
constant with a parameterized function that equals the constant as its parameter approaches zero, the
double-sided exponential function:

f(t)=Ag
Now the Transform becomes:

© 0 )
F.(0) = J‘Agfa‘t‘g"“’tdt = IAg*atgj“’tdt + j Ae gl dt
—» —o0 0
Let u = - in the first integral
0 ) o .
F,(w) = J. Ag ettt + I As gl dt
0 0
From our first example this is:
A A 2Aa

F, (o) = — + —=— 5
a-jo a+jo a’+w

Now we need to take the limit as a— 0 to get F(w)
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F(@) = |im F.(o)

a—0
- o 2Aa ~ 0 if w0
@=lim ===
a——0 @ o if =0

so this is a 8-function that goes to « at » = 0 if its integral is a constant.

a

dw
a’+w?

|=j2A
Leta*X = w

| =2A.|;ﬂla+—xz)adx

1

1 +x2dx

I=2AT

| =2A*tan*x |

—00

-l

| =27A
Therefore

F(w)=27A*d(w)
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Exercises:

1: Find the Fourier Transforms for each of the two pulses

Page 9

fi(t)

1/At

At

2/At

—At
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2: Find the transfer function for the simple RC low-pass filter
e
—""'.,.-"".,-""‘-.; s .
vin . " vout | L
3: Determine the Fourier Transform of the RC low-pass filter output due to each of the pulses in
part 1
4: Find the limit of each of the results in part 3as At —» 0
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Properties of the Fourier Transform

Symmetry Property
If f(t) «—>F (o)

Then F(t) «—»2nf(-m)
Proof:

£(t) :i:[cF(a) )*& 1 e
Therefore

22 f(-t)= [F(w)k " do
Letu=o andi\O/O: t

22 £(-v) = [ Flu)e

Now let ® = v:nd t=u

27 f(- )= [F(tle ot

Therefore F(t) «— 2r f(-m)
And if f(t) is an even function
F(t) «—» 27 f(w)

Linearity Property

If fi(t) «—» Fi(®)

And  fy(t) «—> Fy(w)

Then [a*fy(t) + b*fi(t)] > [a*Fi(w) + b*F2(w)]
Proof:

Results due to the linearity of integration

J. N. Denenberg
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Scaling Property
If f(t) «—> F(o)
Then for a real
1 F(Qj
f(a*t) a \a

Proof:
Sif(@*t) = [ flaxt)e “dt
case 1: a>0 Letx=a*t

S{fa*t)= [ f(x)e Lo

0 .

S{f@a*t) =2 [ f(x)e '+ dx

S{f(a*t)}:éF[gj

case 2: a<0 Again let x = a*t

Slf(a*t)= [ F(x)s =" Zox
" a (Note the limits are now backwards)

S(f (a*t)) = _i [ 1(x)e " "ax

—00

or
l (o

S fla*t)j=——F| —
strlaro)--1¢ 2]
Therefore including both cases

HiF(QJ

f(a*t) a \a

Q.E.D.

Note: The compression of a function in the time domain results in an expansion in the frequency
domain and vice versa.
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Frequency Shifting
If f(t) > F(o)
Then f(t)*gjwot <> F(CU —a)o)

Proof:

Flo)= T f(t)* e idt

f (t)*é‘_j("’_%)tdt

T
—_
S
|
%
o
NG
|

g —3

Flo—w,)= Hf (1)* 5% Jr 5 it

or
Flo-o,)= S{f (t)* gl }

Q.E.D.

Note: The Modulation Theorem (very important in communications)
Remember Euler’s Identities

Jx —jx

¥ e™ : e¥—¢
oS = sin(x) = :
(x) 2 and (x) T
therefore
* . X " X
f (t)cos(x) = f(t)*e +2 ft)*e
or

Flo+w, )+ F(o—,)

f(t)COS(X)(__) '

similarly

f (t)sin(x) = ft)*e" ;jf (t)* e

or

f(t)sin(x)«— j F(w+a)0);|:(a)—a)0)
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Time Shifting
i ft)oF)

Then f (t—t,) <> Flow,)*s '™

Proof:

2r 2
f(t—t )=i‘TF(a})* jw(t—to)da)
7 ox
1 % ; ;
flt—t,)=— ||Flo)*&e ' [*&'”'d
t-t)= 2 [[F@)e oo

ft—t,) > Flo)*s it
Q.E.D.

J. N. Denenberg
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Time Differentiation and Integration
it f)eoF)

L] (jo)F ()

Then dt

And jo
Proof:

First for differentiation (part 1)

o0

J. N. Denenberg
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Now for integration (part 2)

f(t)= ij Flo)*&'do

jf j[ TF * j“’dw}dr

—OO

Interchanging the order of integration

t

j Fe)dr = | F(a))*_J.sj‘”dr}da)

i 2r 7 I
. . _

jf :LJ. Flo _igj“’t}dw

i 2r 7 | Jo

‘ 1701 i

f =—||—F * glot

__[O (z)dz Zﬂ_J;O{ja) (a))} e dw

or

t 1

If(r)dr<—>_—F(a))

S Jo Q. E. D. for part 2

J. N. Denenberg
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Frequency Differentiation
it f()oFo)

i) e

F()

Then dt"

Proof:

at” Q.E.D.
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The Convolution Theorem

Definition: the convolution of two functions fl(t) and fz(t) is defined as:

o0

LO® )= [ () - )r = [ 1)t -r)dr

—00

Time Convolution

i Lo R@)

And  T(t) Fo)

Then ()@ £,(t)} > F(@)*F,(e)
Proof:

Flo)= [ 1H)*e o

—00

Therefore

Let u =t - tin the inner integral

SO LO)= | fl(f){ jfz(u)*e"”(””)du}dr

=—00 00

S{O® 0= | fl(f)g—im{ jfz(u)*e‘j”’”du}dr

t=—c0

Since the inner integral is no longer a function of t, it can be brought out as a constant and this leaves

o0

SO® L= [ G dr* [ 1u)edu

=—00 U=—o0
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Frequency Convolution

If f,(t) & F(o)
And  F.()o F(o)
A R O

Proof: Same method as for time convolution
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