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Sampling and Reconstruction 

Introduction 
This section introduces the relationship between continuous signals/systems and their representation as 
discrete-time signals/systems that allows the direct use of digital computing technology.  Sampling forms 
the bridge between these two representations of the world. 
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Sampling 
Pulse Amplitude Modulation 
PAM is where the analog signal after sampling takes on the form of a sequence of pulses Ts seconds apart.  
Each pulse carries information about the analog signal’s amplitude at the time the pulse was generated. 

There are two variants of PAM.  The first, currently the dominant approach, called Natural Sampling is 
where the shape of each pulse is affected by the changing input during the pulse.  The second is called 
Uniform Sampling (mainly used in the older laboratory grade samplers) where all of the pulses have the 
same shape, but different amplitudes.  We will analyze both. 

Natural Sampling in the Time Domain 
Assume that we have a generalized, time-limited pulse centered at t = 0 as shown below. 
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The Fourier Transform of this pulse is to denoted P(jω). A periodic version of this pulse where the original 
pulse now repeats every Ts seconds is then: 
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Uniform Sampling in the Time Domain 
The second type of sampling, Uniform Sampling, results in a train of pulses in which each pulse has the 
same shape.  Each pulse has a “strength” which is set by the value of the input at the sampling “instant”.  
This method also goes by the name “Flat Top Sampling” when the transmitted pulses are rectangular.  One 
way to implement uniform sampling is to precede a natural sampler with a “Sample and Hold” circuit. 

 

 

 

 

 

The Sample and Hold circuit has the following effect on an analog signal. 

This is a non-linear distortion of the signal, but now the signal is constant during each pulse of the pulse 
train and multiplying leaves all of the resulting pulses having the same shape.  A delay of ½ Ts must be 
introduced in the pulse train to center each pulse in a constant region of the modified signal.  This has the 
effect of delaying the signal itself by Ts/2.   
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Frequency Domain Analysis of Sampled Signals 
Introduction 
Both types of sampling are practical.  One, Natural Sampling, is simpler in the frequency domain while the 
other, Uniform Sampling, is simpler in the time domain.  In the limiting case, as the pulse width approaches 
zero while holding the pulse area constant, both systems yield the same result.  This limiting case is called 
Ideal (or Impulse) Sampling where each pulse is now the “Impulse” or “Dirac Delta” function, ( )sTnt *−δ , 
and is the form of sampling described in many textbooks. 

Natural Sampling in the Frequency Domain 
Let P(jω) be the Fourier transform of p(t), the single sampling pulse of width ∆t < Ts.  The Fourier series for 
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Where the height of each “bar” denotes the strength of the delta function at that frequency. 
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Since the Fourier Transform of a product of two time functions is the convolution of their individual Fourier 
Transforms.  The Fourier Transform of the sampled version of the input, x(t), is: 
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Notes: 

1. Each repetition of X(jω), the Fourier Transform of x(t), is identical.  It only varies in magnitude 
according to the magnitude of P(jω) at the center frequency of that repetition. 

2.  If ωs (or fs) increases (i.e. Ts decreases), the repetitions remain equally spaced in the frequency 
domain, but move further apart. 

Aliasing 
TBD 

Uniform Sampling in the Frequency Domain 
TBD 
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