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The Z-Transform 

Introduction 

A linear system can be represented in the complex frequency domain (s-domain where s =  + j) using the 

LaPlace Transform. 

 

Where the direct transform is: 
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And x(t) is assumed zero for t ≤ 0 

The Inversion integral is a contour integral in the complex plane (seldom used, tables are used instead) 
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Where  is chosen such that the contour integral converges. 

If we now assume that x(t) is ideally sampled as in: 

 

 

 

Where: 
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Analyzing this equivalent system using standard analog tools will establish the z-Transform. 

Sampling 

Substituting the Sampled version of x(t) into the definition of the LaPlace Transform we get 
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But 

h(t) 

H(s) 

x(t)  y(t) = x(t) * h(t)    

X(s) Y(s) = X(s)H(s) 

Sample 
(Ts sec.) 

 

Analog 
System 

Re-Sample 
(Ts sec.) 

Reconstruct x(t) 

y(t) 
x(t, Ts) 
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Now interchanging the order of integration and summation and using the sifting property of -functions 
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  (We are assuming that the first sample occurs at t = 0+) 

if we now adjust our nomenclature by letting: 

z = sT , x(n*Ts) = xn , and 
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Which is the direct z-transform (one-sided; it assumes xn = 0 for n < 0). 

The inversion integral is: 
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  (This is a contour integral in the complex z-plane) 

(The use of this integral can be avoided as tables can be used to invert the transform.) 

To prove that these form a transform pair we can substitute one into the other. 
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Now interchanging the order of summation and integration (valid if the contour followed stays in the region 

of convergence): 
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If “C” encloses the origin (that’s where the pole is), the Cauchy Integral theorem says: 
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And we get xk = xk  Q.E.D 
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An Example 

Find the z-transform of  

knifo

knifikn
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 This is the “Unit Pulse” at n = k (assume k > 0) 
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 (Note: dividing by z is equivalent to a delay of one sample time) 

A Short Table of z-Transforms 
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Properties of the z-Transform 

The z-transform has properties that are analogous to those of the LaPlace Transform.  The following table 

has some of the more useful ones listed. 

 

 
  

where C is a closed contour 

that includes z=0 

 Signal   z-Transform 

 
   

Superposition 
   

Time Shifting 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

Time 

inversion 
  

 

Time 

Convolution 
 

(convolution) 
 

Frequency 

Differentiation 
  

 

Summation 

 

 

 

 

You should familiarize yourself with these as they will be used, along with the table of transforms to move 

between time series and the z-domain. 

Finding the Inverse z-Transform 

There are three common ways to find the time series, xn when X(z) is given: 

1. Infinite Series – done by dividing out the rational polynomial in z 

2. Partial Fraction Expansion – Same as in LaPlace 

3. The Inversion Integral – a contour integral in the complex z-plane 
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Example:  
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A. By Infinite Series 
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Now divide (long division) with the polynomials written in descending powers of z 

           2z-2+8z-3+22z-4+52z-5+114z-6+… 

Z3-4z2+5z-2|2z 

           2z-8+10z-1-4z-2 

              8-10z-1+04z-2 

                     8-32z-1+40z-2-16z-3 

                22z-1-36z-2+016z-3 

                22z-1-88z-2+110z-3-44z-4 

                      52z-2-094z-3+044z-4 

                      52z-2-208z-3+260z-4-104z-5 

                           114z-3-216z-4+104z-5 
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And the time sequence for fn is 

n 0 1 2 3 4 5 6 … 

fn 0 0 2 8 22 52 114 … 

 

Note that this method does NOT give a closed form for the answer, but it is a good method for finding the 

first few sample values or to check out that the closed form given by another method at least starts out 

correctly. 
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B. By Partial Fraction Expansion 

( )
( )( ) ( )2

321

2
11212

2

−
+

−
+

−
=

−−
=

z

zk

z

zk

z

zk

zz

z
zF

 

To find k1 multiply both sides of the equation by (z-2), divide by z, and let z→2 
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or 

k1 = 2 

Similarly to find k3 multiply both sides by (z-1)2, divide by z, and let z→1 
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And 

k3 = -2 

Finding k2 requires going back to Equation A above and taking the derivative of both sides 
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Now again let z→1 

k2 = -2 
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C. Using the Inversion Integral 

TBD 

H.W. Find the inverse z-Transform of 
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We can check the answer by putting the three terms over the common denominator 

( )
( ) ( )( ) ( )

( )( )2
2

21

2211
2

−−

−−−−−−
=

zz

zzzz
zzF

 

( )
( )( )2

22

21

22312
2

−−

+−−+−+−
=

zz

zzzzz
zzF

 

( )
( )( )221

1
2

−−
=

zz
zzF

 It checks out! 

 


