The Z-Transform

Introduction

A linear system can be represented in the complex frequency domain (s-domain where s = ¢ + jw) using the
LaPlace Transform.

X ) h(t) y(t) = () @n()
] H(s)

v

X(s) Y(s) = X(s)H(s)

Where the direct transform is:

_ [~ —st
L{x(t)}= X(s)= LO x(t)edt
And x(t) is assumed zero fort <0
The Inversion integral is a contour integral in the complex plane (seldom used, tables are used instead)

L {X(9)}=x(t)

l o+ jo
== [T X(s)eds
27Z] s=0— joo
Where o is chosen such that the contour integral converges.
If we now assume that x(t) is ideally sampled as in:

X(t, Ts)

y(t)

A 4

X(t) - Sample .| Re-Sample .| Reconstruct

(Ts sec.) Analog | (Tssec.)
System

i

Where:

x, =X(n*T,)= X(O) ey
and

Yo =Y(0*T) =y

Analyzing this equivalent system using standard analog tools will establish the z-Transform.

Sampling
Substituting the Sampled version of x(t) into the definition of the LaPlace Transform we get

LIX(tT)} = X;(s)= [ x(t.T,)edlt
But
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X(t.T.)= > x(t)* p(t—n*T,)

n-0 (For x(t) =0whent<0)
Therefore

X;(s)= jt ‘”O{Z X(n*T,)*5(t —n*T, )}g-“dt
“Ln=0
Now interchanging the order of integration and summation and using the sifting property of 5-functions

X:(5)= 3 x(n*T,)[ " 5lt-n*T,)e "t

n=0

X(n*T, g™

Il
s

X:(s)

1l
o

n

(We are assuming that the first sample occurs at t = 0+)
if we now adjust our nomenclature by letting:

z=¢", X(n*Ts) = Xn, and X(2) =%, (sz:g”

X(z):ixnz’“

n=0

Which is the direct z-transform (one-sided; it assumes xn = 0 for n < 0).

The inversion integral is:

_1
n 2721 c

X X (z)z"dz

(This is a contour integral in the complex z-plane)
(The use of this integral can be avoided as tables can be used to invert the transform.)
To prove that these form a transform pair we can substitute one into the other.

1 . -n [, k-1
Xc === D X2 " [z dz
27 {Zi }

Now interchanging the order of summation and integration (valid if the contour followed stays in the region
of convergence):

1 S k-n-1
X, =— ) X.¢.2"dz
k 27Z] ; n§ c
If “C” encloses the origin (that’s where the pole is), the Cauchy Integral theorem says:

k—n-1 _ o fornzk
§cz dz_27zj for n=k

And we get Xk = Xk Q.ED
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An Example
Find the z-transform of

5 _0 _if n=k o .
n—k i if n=k This is the “Unit Pulse” at n = k (assume k > 0)

A(z)= i&n_kz‘"
n=0

Az)=z*

(Note: dividing by z is equivalent to a delay of one sample time)

A Short Table of z-Transforms

f(t) F(2) Region of
(sampled) Convergence
z
u(t) — lz| > 1
z-1
Sn-k z 2| >1
t Tz izl > 1
(z-1f
2
2 T2(z+1) 2| > 1
(z-1)
z
gat - gaT |Z| > Sat
: z*sin(4T)
>1
sin(BY) | 72— 2z *cos(AT ) +1 g
2*[z—cos(4T)]
>1
cos(BY) | 72 22*cos(AT )+1 g
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The Z-Transform

Properties of the z-Transform

The z-transform has properties that are analogous to those of the LaPlace Transform. The following table

has some of the more useful ones listed.

P z[n]|= L__I;K[z)zn_ldz
H(z)= Zx[n]z_n = 2Tz
n=—am where C is a closed contour
that includes z=0
Signal z-Transform
x[n] = X(z)
Superposition  ax[n |+ by[n] =N 2 (z)+b¥(z)
Time Shifting z[n—ng] = z M (z)
g itm g[n | < K(e_jg“ z)
=2 x[n] < K[iJ
Zp
a“x[n] = K(a_lz)
Time z[-n] =N :}{:[z‘l)
inversion
Time z[n |*v[n] (convolution) H(z)¥(z)
Convolution
Frequency n %[n] o L (z)
Differentiation de
n 1
Summation > x[k] = 1— 1 (z)
k=

You should familiarize yourself with these as they will be used, along with the table of transforms to move

between time series and the z-domain.

Finding the Inverse z-Transform

There are three common ways to find the time series, X, when X(z) is given:

1. Infinite Series — done by dividing out the rational polynomial in z

2. Partial Fraction Expansion — Same as in LaPlace

3. The Inversion Integral — a contour integral in the complex z-plane
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Fle)=
Example: (z-2)z-1 | determine f,
A. By Infinite Series

22
F(z)=
@) 72 —47*+52-2

Now divide (long division) with the polynomials written in descending powers of z
2272487734222 44522 5+114z%+...
Z3-4z2+5z-212z
2z-8+10z"1-4z2
8-10z"14+04z2
8-32z"14+40z2-16273
227271-362z72+016z73
227271-8822+110z3-44z"4
52272-094z73+044z4
52272-208273+260z"4-104z75
114z73-216z"4+104z°5

F(z2)=> fz" =222 +82%+222* +522° +1142° +...

n=0

And the time sequence for f, is

ni0|1/2(3|4 |5 |6

fn]010]|2]8|22|52 114

Note that this method does NOT give a closed form for the answer, but it is a good method for finding the
first few sample values or to check out that the closed form given by another method at least starts out
correctly.
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B. By Partial Fraction Expansion

(2-2)z-1F 2-2 2-1 (z-1f

F2)- 22 kiz  k,z K,z

To find k1 multiply both sides of the equation by (z-2), divide by z, and let z—2

27 ka2 k,2(z-2) N k,z(z —22)
(z-1) z-1 (z-1)
2 . :kl k2(2_2)+ ks(Z—f)
(z-1) -1 (z-1)
2 | k=2 | Kk(-2)
(z-17,, - z-1 |, (z-1° |,
or
ki=2
Similarly to find ks multiply both sides by (z-1)?, divide by z, and let z—1
2
2 __ k(z-1) +k,(z-1)+k,z
(z-2)  z-2 Equation A
And
ks=-2

Finding k2 requires going back to Equation A above and taking the derivative of both sides

2
2 :kl(z_l) +k,(z—1)+k,z

(z-2) z-2
2
2 _y, 2(z—1)_2(z—1)2 ik,
(z-2) z2-2  (z-2)
Now again let z—1
ko =-2

2z 22 22
F — _ _
@) z2-2 7-1 (z-1¢

C. Using the Inversion Integral
TBD
H.W. Find the inverse z-Transform of

F(2)= 2(22 -2z-1)

(22 +1f
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We can check the answer by putting the three terms over the common denominator
F(2)=22 (z-1Y -(z-1)z-2)-(z-2)
(z-1)z-2f
22 -27241-7°+32-2-17+2
(z-1)z-2)
1
(=202 —-2) 1t checks out!

F(z)=2z

F(z)=2z
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