1

INTRODUCTION

Fig. 1-1. The client-server model.

Interprocessor distance	Processors located in same	Example
0.1 m	Circuit board	Data flow machine
1 m	System	Multicomputer
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country	Mide area naturale
1,000 km	Continent	→ Wide area network
10,000 km	Planet	The internet

Fig. 1-2. Classification of interconnected processors by scale.

Fig. 1-3. Two broadcast networks. (a) Bus. (b) Ring.

Fig. 1-4. Architecture of the DQDB metropolitan area network.

Fig. 1-5. Relation between hosts and the subnet.

Fig. 1-6. Some possible topologies for a point-to-point subnet. (a) Star. (b) Ring. (c) Tree. (d) Complete. (e) Intersecting rings. (f) Irregular.

Wireless	Mobile	Applications
No	No	Stationary workstations in offices
No	Yes	Using a portable in a hotel; train maintenance
Yes	No	LANs in older, unwired buildings
Yes	Yes	Portable office; PDA for store inventory

Fig. 1-7. Combinations of wireless networks and mobile computing.

Fig. 1-8. (a) Individual mobile computers. (b) A flying LAN.

Fig. 1-9. Layers, protocols, and interfaces.

Fig. 1-10. The philosopher-translator-secretary architecture.

Fig. 1-11. Example information flow supporting virtual communication in layer 5.

Fig. 1-12. Relation between layers at an interface.

	Service	Example
Connection- oriented	Reliable message stream	Sequence of pages
	Reliable byte stream	Remote login
	Unreliable connection	Digitized voice
Connection- less	Unreliable datagram	Electronic junk mail
	Acknowledged datagram	Registered mail
	Request-reply	Database query

Fig. 1-13. Six different types of service.

Primitive	Meaning
Request	An entity wants the service to do some work
Indication	An entity is to be informed about an event
Response	An entity wants to respond to an event
Confirm	The response to an earlier request has come back

Fig. 1-14. Four classes of service primitives.

Fig. 1-15. How a computer would invite its Aunt Millie to tea. The numbers near the tail end of each arrow refer to the eight service primitives discussed in this section.

Fig. 1-16. The OSI reference model.

Fig. 1-17. An example of how the OSI model is used. Some of the headers may be null. (Source: H.C. Folts. Used with permission.)

Fig. 1-18. The TCP/IP reference model.

Fig. 1-19. Protocols and networks in the TCP/IP model initially.

Fig. 1-20. The apocalypse of the two elephants.

5	Application layer
4	Transport layer
3	Network layer
2	Data Link layer
1	Physical layer

Fig. 1-21. The hybrid reference model to be used in this book.

Layer Application SAP File server Transport NCP SPX Network IPX Ethernet Data link Token ring **ARCnet** Physical Ethernet Token ring **ARCnet**

Fig. 1-22. The Novell NetWare reference model.

Fig. 1-23. A Novell NetWare IPX packet.

Fig. 1-24. The original ARPANET design.

Fig. 1-25. Growth of the ARPANET. (a) Dec. 1969. (b) July 1970. (c) March 1971. (d) April 1972. (e) Sept. 1972.

Fig. 1-26. The NSFNET backbone in 1988.

Fig. 1-27. (a) Four LANs interconnected with leased lines. (b) Interconnection using SMDS.

Fig. 1-28. The SMDS packet format.

Fig. 1-29. An ATM cell.

Fig. 1-30. The B-ISDN ATM reference model.