6

THE TRANSPORT LAYER

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Host 1 Host 2

Application Application
(or session) Application/transport (or session)

layer rransport | interface layer
~ address |,/
TPDU
Transport S — _ | Transport
entity T Transport entity
protocol
Network — AN
address Transport/network

interface

Network layer Network layer

Fig. 6-1. The network, transport, and application layers.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Connection establishment delay

Connection establishment failure probability

Throughput

Transit delay

Residual error ratio

Protection

Priority

Resilience

Fig. 6-2. Typical transport layer quality of service parameters.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Primitive TPDU sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA TPDU arrives
DISCONNECT | DISCONNECTION REQ.| This side wants to release the connection

Fig. 6-3. The primitives for a simple transport service.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Frame Packet TPDU
header header header

/

’ #

TPDU payload

Packet payload

- Frame payload

Fig. 6-4. Nesting of TPDUSs, packets, and frames.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Connection request Connect primitive

TPDU received executed
------------------- IDLE
4
1
1
¥]

PASSIVE ACTIVE
ESTABLISHMENT ESTABLISHMENT
PENDING PENDING

T
1
1
: J
AL TR R +| ESTABLISHED
Connect primitive Connection request
executed TPDU received

Disconnection request Disconnect primitive

L ——

TPDU received executed
PASSIVE ACTIVE
DISCONNECT |w===mmmmmmmeeees DISCONNECT
PENDING PENDING
: J
1
1
1
L TR L LR LR - IDLE - _
Disconnect Disconnection request
primitive executed TPDU received

Fig. 6-5. A state diagram for a simple connection management
scheme. Trangitions labeled in italics are caused by packet
arrivals. The solid lines show the client’s state sequence. The
dashed lines show the server’s state sequence.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Block the caller until a connection attempt arrives

CONNECT | Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Fig. 6-6. The socket primitives for TCP.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Router Router Subnet

\ /

[®
\ Physical N

communication channel

Host

@) (b)

Fig. 6-7. (a) Environment of the data link layer. (b) Environment
of the transport layer.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Host 1
Application TSAP 6
process /
Network \Transport
connection connection
starts here : starts here
\‘

1

:\ NSAP

:

1

1

1

1

1

1

1

1

1

1

1

:

1

1

1

1

1

:

\

Host 2

Application
layer

?\ Server

Transport
layer

TSAP 122

Network
layer

/

NSAP

Data link
layer

Physical
layer

Fig. 6-8. TSAPs, NSAPs, and connections.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

L} S ——— ________________'_______

Layer

Host 1 Host 2 Host 1
Server

TSAP

((

((
)

((

((
)

((
)

((

((
)

((
)

Fig. 6-9. How a user process in host 1 establishes a connection

with atime-of-day server in host 2.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

: T 21
Forbidden |« - T
) message I<*II
120 %) H
] Q o
: 5 g a
N\
o S £ !
8 80 O g ,
5) 3 |
g O / ~—_Restart after s !
& 60 crash with 70 = '
: a
Actual sequence }
0 | | | | | numbers used !
0O 30 60 90 120 150 180
Time Time

@) (b)

Fig. 6-10. (@) TPDUs may not enter the forbidden region. (b) The
resynchronization problem.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Host 1 Host 2 Host 1 Host 2

«— Time
A
Q
.
@
o
A\
<
-
Q
=
\\
ko)

Host 1 Host 2
C

R
(Seq:X)
Old duplicate

R
eer (Ack
:y)

(©

Fig. 6-11. Three protocol scenarios for establishing a connection using a
threeeway handshake. CR and ACC denote CONNECTION REQUEST and
CONNECTION ACCEPTED, respectively. (a) Normal operation. (b) Old
duplicate CONNECTION REQUEST appearing out of nowhere. (c) Duplicate
CONNECTION REQUEST and duplicate ACK.

Host 1 Host 2

Time
O
=
>

—~—

No data are
delivered after

a disconnect
request

Fig. 6-12. Abrupt disconnection with loss of data.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

.m White army

Fig. 6-13. The two-army problem.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Host 1

Send DR
+ start timer

Release
connection

Send ACK

&»
%

%

Host 1

(@

Send DR
+ start timer

(Timeout)
send DR
+ start timer

Release
connection

Send ACK

\DRDR>
Bl
%

%

%

Host 2 Host 1 Host 2
Send DR \DR-
+ start timer
+S(ten(;ltpR Send DR
sartamer y + start timer
Release :
connection .
.
[]
[]
ACk *
Releaie Send ACK — :
connection (Timeout)
release
connection
(b)
Host 2 Host 1 Host 2
Send DR \DR)-
Send DR & + stat timer Send DR &
start timer : / start timer
® []
® []
. ° []
Send DR & (Timeout) .
start timer send DR \ :
+ start timer °
° °
o °
o °
L4 °
o °
L4 °
Release (N Timeouts) (Timeout)
connection release release
connection connection

(©

(d)

Fig. 6-14. Four protocol scenarios for releasing a connection. (a)

Normal case of three-way

handshake. (b) Final ACK logt. (c)

Response lost. (d) Response lost and subsequent DRs |ost.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

g g ~ ~ :}TPDU1

<

> TPDU 2
}TPDUS
M
(a) (b)
> TPDU 4
Unused
space

(©

Fig. 6-15. (@) Chained fixed-size buffers. (b) Chained variable-
size buffers. (c) One large circular buffer per connection.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Message

Comments

1 < request 8 buffers> A wants 8 buffers
2 <ack = 15, buf = 4> B grants messages 0-3 only
3 <seq = 0, data = m0> A has 3 buffers left now
4 <seq =1, data = m1> A has 2 buffers left now
5 <seq = 2, data = m2> Message lost but A thinks it has 1 left
6 <ack =1, buf =3> B acknowledges 0 and 1, permits 2-4
7 <seq = 3, data = m3> A has buffer left
8 <seq = 4, data = m4> A has 0 buffers left, and must stop
9 <seq = 2, data = m2> A times out and retransmits
10 <ack = 4, buf = 0> Everything acknowledged, but A still blocked
11 <ack = 4, buf = 1> A may now send 5
12 <ack =4, buf = 2> B found a new buffer somewhere
13 <seq = 5, data = m5> A has 1 buffer left
14 <seq = 6, data = m6> A is now blocked again
15 <ack = 6, buf = 0> A is still blocked
16 <ack = 6, buf = 4> Potential deadlock

Fig. 6-16. Dynamic buffer allocation. The arrows show the direc-
tion of transmission. An €lipsis(...) indicates alost TPDU.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Transport address

Layer
Network
4 L~ address
3
2 Router lines
1
To router
(@) (b)

Fig. 6-17. () Upward multiplexing. (b) Downward multiplexing.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Strategy used by

Strategy used by receiving host

First ACK, then write

First write, then ACK

sending host AC(W) AWC C(AW) C(WA) W AC WC(A)
Always retransmit OK DUP OK OK DUP DuUP
Never retransmit LOST OK LOST LOST OK OK
Retransmit in SO OK DUP LOST LOST DUP OK
Retransmit in S1 LOST OK OK OK OK DUP
OK = Protocol functions correctly

DUP = Protocol generates a duplicate message
LOST = Protocol loses a message

Fig. 6-18. Different combinations of client and server strategy.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Network packet Meaning
CALL REQUEST Sent to establish a connection
CALL ACCEPTED Response to CALL REQUEST
CLEAR REQUEST Sent to release a connection
CLEAR CONFIRMATION | Response to CLEAR REQUEST
DATA Used to transport data
CREDIT Control packet for managing the window

Fig. 6-19. The network layer packets used in our example.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

#define MAX_CONN 32 /* maximum number of simultaneous connections */
#define MAX_MSG_SIZE 8192 /* largest message in bytes */

#define MAX_PKT_SIZE 512 /* largest packet in bytes */

#define TIMEOUT 20

#define CRED 1

#define OK 0

#define ERR_FULL -1
#define ERR_REJECT -2
#define ERR_CLOSED -3
#define LOW_ERR -3

typedef int transport_address;
typedef enum {CALL_REQ,CALL_ACC,CLEAR_REQ,CLEAR_CONF,DATA_PKT,CREDIT} pkt_type;
typedef enum {IDLE,WAITING,QUEUED,ESTABLISHED,SENDING,RECEIVING,DISCONN} cstate;

/* Global variables. */

transport_address listen_address; /* local address being listened to */
int listen_conn; /* connection identifier for listen */
unsigned char data][MAX_PKT_SIZE]; /* scratch area for packet data */

struct conn {
transport_address local_address, remote_address;

cstate state; /* state of this connection */

unsigned char *user_buf_addr; [* pointer to receive buffer */

int byte_count; /* send/receive count */

int clr_req_received,; /* set when CLEAR_REQ packet received */
int timer; /* used to time out CALL_REQ packets */
int credits; /* number of messages that may be sent %/

} conn[MAX_CONN];

void sleep(void); [* prototypes */

void wakeup(void);

void to_net(int cid, int g, int m, pkt_type pt, unsigned char *p, int bytes);

void from_net(int xcid, int *q, int *m, pkt_type *pt, unsigned char *p, int *bytes);

int listen(transport_address t)
{ I* User wants to listen for a connection. See if CALL_REQ has already arrived. */
inti=1, found = 0;

for (i = 1; i <= MAX_CONN; i++) /% search the table for CALL_REQ */
if (conn[i].state == QUEUED && connli].local_address ==1) {

found =i;
break;

}

if (found == 0) {
/* No CALL_REQ is waiting. Go to sleep until arrival or timeout. */

listen_address =t; sleep(); i = listen_conn;
}
connli].state = ESTABLISHED; /* connection is ESTABLISHED */
conn[i].timer = 0; [* timer is not used */
listen_conn = 0; /* 0 is assumed to be an invalid address */
to_net(i, 0, 0, CALL_ACC, data, 0); /* tell net to accept connection */
return(i); [* return connection identifier */

}

int connect(transport_address |, transport_address r)

{ I* User wants to connect to a remote process; send CALL_REQ packet. */
int i;
struct conn xcptr;

data[0] =r; data[l] = |, /* CALL_REQ packet needs these */
i = MAX_CONN; /* search table backward */
while (conn[i].state != IDLE &&i>1)i=i-1,

if (conn[i].state == IDLE) {
/* Make a table entry that CALL_REQ has been sent. */
cptr = &conn(i];
cptr->local_address = I; cptr->remote_address =r;
cptr->state = WAITING; cptr->clr_req_received = 0;
cptr->credits = 0; cptr->timer = 0;
to_net(i, 0, 0, CALL_REQ, data, 2);
sleep(); /* wait for CALL_ACC or CLEAR_REQ */
if (cptr->state == ESTABLISHED) return(i);
if (cptr->clr_req_received) {
/* Other side refused call. */
cptr->state = IDLE; /* back to IDLE state */
to_net(i, 0, 0, CLEAR_CONF, data, 0);
return(ERR_REJECT);

}
} else return(ERR_FULL); /* reject CONNECT: no table space */

}

int send(int cid, unsigned char bufptr[], int bytes)

{ I User wants to send a message. */
int i, count, m;
struct conn *cptr = &conn|cid];

/* Enter SENDING state. */
cptr->state = SENDING;
cptr->byte_count = 0; [* # bytes sent so far this message */
if (cptr->clr_reg_received == 0 && cptr->credits == 0) sleep();
if (cptr->clr_req_received == 0) {
/* Credit available; split message into packets if need be. */
do{
if (bytes - cptr->byte_count > MAX_PKT_SIZE) {/* multipacket message */
count = MAX_PKT_SIZE; m = 1;/* more packets later */
} else { /* single packet message */
count = bytes — cptr->byte_count; m = 0;/* last pkt of this message */
}

for (i = 0; i < count; i++) data][i] = bufptr[cptr->byte_count + i;

to_net(cid, 0, m, DATA_PKT, data, count);/* send 1 packet /

cptr->byte_count = cptr->byte_count + count;/* increment bytes sent so far */
} while (cptr->byte_count < bytes); /* loop until whole message sent */

cptr->credits——; /* each message uses up one credit */
cptr->state = ESTABLISHED;
return(OK);
}else {
cptr->state = ESTABLISHED;
return(ERR_CLOSED); /* send failed: peer wants to disconnect */

}
}

int receive(int cid, unsigned char bufptr[], int xbytes)
{ I= User is prepared to receive a message. */
struct conn *cptr = &conn[cid];

if (cptr->clr_req_received == 0) {
/* Connection still established; try to receive. */
cptr->state = RECEIVING;
cptr->user_buf_addr = bufptr;
cptr->byte_count = 0;
data]0] = CRED;
data[1] = 1;
to_net(cid, 1, 0, CREDIT, data, 2); /* send credit */
sleep(); [* block awaiting data */

*xbytes = cptr->byte_count;
}
cptr->state = ESTABLISHED;
return(cptr->clr_req_received ? ERR_CLOSED : OK);

}

int disconnect(int cid)
{ I* User wants to release a connection. */
struct conn *cptr = &conn|cid];

if (cptr->clr_req_received) { /* other side initiated termination */
cptr->state = IDLE; [* connection is now released */
to_net(cid, 0, 0, CLEAR_CONF, data, 0);

}else { /* we initiated termination */
cptr->state = DISCONN,; /* not released until other side agrees */
to_net(cid, 0, 0, CLEAR_REQ), data, 0);

}

return(OK);

}

void packet_arrival(void)
{ I= A packet has arrived, get and process it. */
int cid; [* connection on which packet arrived */
int count, i, g, m;
pkt_type ptype; /* CALL_REQ, CALL_ACC, CLEAR_REQ, CLEAR_CONF, DATA_PKT, CREDIT */
unsigned char data[MAX_PKT_SIZE]; /* data portion of the incoming packet */
struct conn *cptr;

from_net(&cid, &q, &m, &ptype, data, &count);/* go get it */
cptr = &conn[cid];

switch (ptype) {
case CALL_REQ: [* remote user wants to establish connection */
cptr->local_address = data[0]; cptr->remote_address = data[1];
if (cptr->local_address == listen_address) {
listen_conn = cid; cptr->state = ESTABLISHED; wakeup();
} else {
cptr->state = QUEUED,; cptr->timer = TIMEOUT;
}

cptr->clr_req_received = 0; cptr->credits = 0;
break;

case CALL_ACC: /* remote user has accepted our CALL_REQ */

cptr->state = ESTABLISHED;
wakeup();
break;

case CLEAR_REQ: /* remote user wants to disconnect or reject call */
cptr->clr_req_received = 1;
if (cptr->state == DISCONN) cptr->state = IDLE;/* clear collision */
if (cptr->state == WAITING || cptr->state == RECEIVING || cptr->state == SENDING) wakeup();

break;

case CLEAR_CONF: [* remote user agrees to disconnect */
cptr->state = IDLE;
break;

case CREDIT: /* remote user is waiting for data */

cptr->credits += data[1];
if (cptr->state == SENDING) wakeup();
break;

case DATA_PKT: /* remote user has sent data */
for (i = 0; i < count; i++) cptr->user_buf_addr[cptr->byte_count + i] = data[i];
cptr->byte_count += count;
if (m == 0) wakeup();
}
}

void clock(void)
{ I* The clock has ticked, check for timeouts of queued connect requests. */
int i;
struct conn xcptr;
for (i=1; i <= MAX_CONN; i++) {
cptr = &conn(il;

if (cptr->timer > 0) { [* timer was running /
cptr->timer——;
if (cptr->timer == 0) { [* timer has now expired */

cptr->state = IDLE;
to_net(i, 0, 0, CLEAR_REQ), data, 0);

Fig. 6-20. An example transport entity.

State

Dis-
Idle Waiting Queued Established Sending Receiving connecting
(PL: ~/dle
LISTEN P2: Al/Estab [Estab
P2: A2/Idle
P1: ~/ldle
o | CONNECT bt asmwai
2 P4: ASlide
‘€ { DISCONNECT P4: A6IDisc
& P5: AT/Estab
SEND P5: A8/Send
RECEIVE A9/Receiving
f P3: Al/Estab
Call_req P3: A4/Queu'd
Call_acc OEstab
a
L
& | Clear_req Oidle Al0/Estab Al0/Estab Al0/Estab Oldle
>+
£
g Clear_conf Oldle
o
=
DataPkt A12/Estab
Credit All/Estab A7/Estab
x
5 Timeout idle
O
Predicates Actions
P1: Connection table full ~ Al: Send Call_acc A7: Send message
P2: Call_req pending A2: Wait for Call_req A8: Wait for credit
P3: LISTEN pending A3: Send Call_req A9: Send credit
P4: Clear_req pending A4: Start timer A10: Set Clr_req_received flag
P5: Credit available A5: Send Clear_conf All: Record credit

A6: Send Clear_req A12: Accept message

Fig. 6-21. The example protocol as a finite state machine. Each
entry has an optional predicate, an optiona action, and the new
state. The tilde indicates that no major action is taken. An over-
bar above a predicate indicates the negation of the predicate.
Blank entries correspond to impossible or invalid events.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

(I
CONNECT TIMEOUT
IDLE
(CLEAR REQ . CALL REQW
|_
o
o 9
w|x =
WAITING B2 2 QUEUED
el
O n
\) a
CALL ACC LISTEN
ESTAB-
DATA, LISHED RECEIVE
(CLEAR REQ \'
|_
0
SENDING SEND = DATA, RECEIVING
@) CLEAR REQ
O
2
()
\)
DISCON-
NECTING

k CLEAR REQ, CLEAR CONF J

Fig. 6-22. The example protocol in graphical form. Transitions
that leave the connection state unchanged have been omitted for
simplicity.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

IP header TCP header
\J/

A B C D A B C D

(@) (b)

Fig. 6-23.(a) Four 512-byte segments sent as separate IP
datagrams. (b) The 2048 bytes of data delivered to the application
inasingle READ call.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

32 Bits

Source port

Destination port

Sequence number

Acknowledgement number

TCP
header
length

®XoC

E
|
N

0>
ITwnT

R
S
T

Z2<w0m

Window size

Checksum

Urgent pointer

Options (0 or more 32-bit words)

((
)

i

Data (optional)

((
)

Fig. 6-24. The TCP header.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Source address

Destination address

000000O0O0

Protocol = 6 TCP segment length

Fig. 6-25. The pseudoheader included in the TCP checksum.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Host 1 Host 2 Host 1 Host 2

%\‘

:X""‘D

- cK
SYN (SEQ ™Y A

~«—Time

SYN

%

(a) (b)

Fig. 6-26. (a) TCP connection establishment in the normal case.
(b) Call collision.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIMED WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

Fig. 6-27. The states used in the TCP connection management finite state machine.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

(Start)

CONNECT/SYN
CLOSED \
— CLOSE~
1
LISTEN/- | CLOSE/-
SYN/SYN + ACK !
T LISTEN
]
! RST/- j k SEND/SYN
SYN - SYN
RCVD |+ - ENT
¢ ; SYN/SYN + ACK (simultaneous open) S
:
i (Data transfer stake)
\ _
N ACKI- ... ~| ESTABLISHED J
SYN + ACK/ACK
CLOSE/FIN ! (Step 3 of the three-way handshake)
1
1
CLOSE/FIN '\\ FIN/ACK
(Active close) (Passive \‘. Close)
I A o N l
| FIN/ACK ! : CL'OSE I
! FIN CLOSING ! ! l
: WAIT 1 i i WAIT ;
I I
1 ! 1 |
| ACK- ACKI- ! i CLOSE/FIN!
1 [1 :
: FIN + ACK/ACK i | !
! FIN TIMED : : LAST !
I ! ACK I
: WAIT 2 FINJACK WAIT i ! : :
' I | 1 '
L e e ! L__________:_ __________ H
(Timeout/) i
ACK/- J
CLOSED |wmmmmmmmmmmmmmmmmmmmm -

(Go back to start)

Fig. 6-28. TCP connection management finite state machine. The heavy solid line is the
normal path for a client. The heavy dashed line is the normal path for a server. The
light lines are unusual events.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Sender Receiver

Application
doesa2K ——»
write

Application
does a 3K B
write

Sender is
blocked

Sender may
send up to 2K —=

ACK = 2048 WIN = 2048
m SEQ = 2048

Fig. 6-29. Window management in TCP.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Receiver's

buffer
4K

Empty

2K

Full

Application
reads 2K

2K

1K

2K

Receiver's buffer is full

|

Application reads 1 byte

| |<— Room for one more byte |

Window update segment sent

. > New byte arrives
/ l

1 Byte

Receiver's buffer is full

N

Fig. 6-30. Silly window syndrome.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

N

Transmission
rate adjustment

Internal
congestion

Transmission
network

/

Small-capacity Large-capacity
receiver ~. @ receiver
€Y (b)

Fig. 6-31. (a) A fast network feeding a low-capacity receiver. (b) A slow network feed-
ing a high-capacity receiver.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

44 —)
Timeout

e

40 |
36 1= Threshold
30 b gt . Z{___
28 —

24 Threshold

20+ Mg

16

Congestion window (kilobytes)

12

0 2 4 6 8 10 12 14 16 18 20 22 24
Transmission number

Fig. 6-32. An example of the Internet congestion algorithm.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

03 T 0.3 - T T2
| | |
m I I I
I I I
I I I
I I I
I I I
I I I
I I I
0.2 ' 02 | ! !
> i 2> | l
£ ! 5 | !
© | © 1 1
o | o 1 1
o | [e) 1 1
& | & | |
0.1 i 01| | |
| | |
I I I
]]]
I I I
]]]
I I
k: m 1
0 | AN | | 0 | L1 1 L

0 10 20 30 40 50 0 10 20 30 40 50
Round trip time (msec) Round trip time (msec)

(@) (b)

Fig. 6-33. () Probability density of acknowledgement arrival times in the data link
layer. (b) Probability density of acknowledgement arrival times for TCP.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

32 Bits

Source port

Destination port

UDP length

UDP checksum

Fig. 6-34. The UDP header.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Sender TCP #1 Base

N

=

Mobile
host
Router Antenna

Fig. 6-35. Splitting a TCP connection into two connections.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Timing

Bit rate

Mode

A B () D
Real None Real None Real None Real None
time time time time

Constant Variable Constant Variable

Connection orientated

Connectionless

Fig. 6-36. Original service classes supported by AAL (now obsolete).

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

ATM Convergence sublayer (service specific part)
adaptation Convergence sublayer (common part)

layer Segmentation reassembly sublayer

Discussed
¢ in chapter 6

AN

Discussed

ATM layer ¢ in chapter 5

J \

Discussed

Physical layer in chapter 3

Fig. 6-37. The ATM model showing the ATM adaptation layer and its sublayers.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Output by application Message

Header Trailer
Output by

convergence sublayer | CS Cs
Output | 5 S S S S S
by SAR [A| CS A A A A CSs A
sublayer | R R R R R R
Output (A |S S S S S
by [T|A| CS A TIA A TIA CS A
ATM layer [M|R R R R R R

M M
/ ~— 4448 —» \
ATM
header :2 Unused

SAR Convergence SAR Bytes Convergence
header sublayer header trailer sublayer trailer

Fig. 6-38. The headers and trailers that can be added to a message in an ATM network.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Bits 1 3 3 1 .

3)

non-P | 0| SN| SNP 47-Byte payload
{f

Even parity

((

3)

P|1|SN|SNP Pointer 46-Byte payload

f

48 Bytes

Fig. 6-39. The AAL 1 cell format.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

-«—1 Byte —— -~ 2 Bytes —MmM
((
3J
SN IT 45-Byte payload LI CRC
((
1)

- 48 Bytes

Fig. 6-40. The AAL 2 cell format.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Virtual
CII’CUIt 1

"

N

multiplexed) _—%
onto virtual
circuit 2

Three sessions {\ /(/

Virtual
circuit 2

sessions

é} } Three

Fig. 6-41. Multiplexing of several sessions onto one virtual circuit.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Bytes 1

1 2 N 0-3 ! 2
) Length
CPI | Btag BAsize |Payload (1 to 655(3(5 bytes)| Padding Etag (0-65535)
n)) N
CS header CS trailer

Fig. 6-42. AAL 3/4 convergence sublayer message format.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Bits 2 4 10 ” 6 10
1B
$ ﬁ MID 44-Byte payload LI CRC
7 { !
00 Middle
01 End 1-44
10 Beginning

11 Single cell message

Fig. 6-43. The AAL 3/4 cell format.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

48 Bytes

Bytes (

(
1)
Payload (1 to 65,535 bytes)
(
)

uu

Length

CRC

(
J

Fig. 6-44. AAL 5 convergence sublayer message format.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

ltem AAL 1 | AAL 2 AAL 3/4 AAL 5
Service class A B C/D C/D
Multiplexing No No Yes No
Message delimiting None None Btag/Etag Bit in PTI
Advance buffer allocation No No Yes No
User bytes available 0 0 0 1
CS padding 0 0 32-Bit word | 0-47 bytes
CS protocol overhead (bytes)| 0 0 8 8
CS checksum None None None 32 Bits
SAR payload bytes 46-47 | 45 44 48
SAR protocol overhead (bytes) 1-2 3 4 0
SAR checksum None None 10 Bits None

Fig. 6-45. Some differences between the various AAL protocols.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Fig. 6-46. The state of transmitting one megabit from San Diego to Boston. (a)
Att=0. (b) After 500 psec. (c) After 20 msec. (d) After 40 msec.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

5~ I'
/
/
/
/
/
4 I //
/
/
7/
//
(] ///
E3f e
S22 -

T
o P L
% //’ ____________
& . /"r': -----

1 Lo

0 | | | | | | | | | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load

Fig. 6-47. Response as a function of load.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

User process running at the Network Receiving

time of the packet arrival manager process
\\ X 4
4 4

User space

Kernel space

Fig. 6-48. Four context switches to handle one packet with a user-space network

manager.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

process TPDU passed to the receiving process

~— Trap into the kernel to send TPDU |:|<g>—\:
L= = F—

@ o —

Em_»m—. | 31—

(? Sending Receiving process \@

Network

Fig. 6-49. The fast path from sender to receiver is shown with a heavy line. The
processing steps on this path are shaded.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Source port Destination port VER. | IHL TOS Total length
Sequence number Identification Fragment offset
Acknowledgement number TTL Protocol Header checksum
Len [Unused Window size Source address
Checksum Urgent pointer Destination address
@) (b)

Fig. 6-50. (a) TCP header. (b) IP header. In both cases, the shaded fields are
taken from the prototype without change.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Slot

0 —+— Pointer to list of timers for T + 12
1 0
2 0
3 0
4 0 <— Currenttime, T
5 0
6 0
7 —+— Pointer to list of timers for T + 3
8 0
9 0
10 0
11 0
12 0
13 0
14 —1— Pointer to list of timers for T + 10
15 0

Fig. 6-51. A timing whesel.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

1000 sec —

100 sec —

.Gé 10 sec —
@

% 1sec|—
C
o

© 100 msec |~
=

10 msec |-

1 msec —

| | | | | | | | | |

108 104 10° 108 107 108 10° 1010 1011 1012
Data rate (bps)

Fig. 6-52. Time to transfer and acknowledge a 1-megabit file over a 4000-km
line.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

