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Fig. 6-1. The network, transport, and application layers.
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Fig. 6-2. Typical transport layer quality of service parameters.
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Primitive TPDU sent Meaning
LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ. Actively attempt to establish a connection
SEND DATA Send information
RECEIVE (none) Block until a DATA TPDU arrives
DISCONNECT | DISCONNECTION REQ.| This side wants to release the connection

Fig. 6-3. The primitives for a simple transport service.
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Fig. 6-4. Nesting of TPDUSs, packets, and frames.
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Connection request Connect primitive
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primitive executed TPDU received

Fig. 6-5. A state diagram for a simple connection management
scheme. Trangitions labeled in italics are caused by packet
arrivals. The solid lines show the client’s state sequence. The
dashed lines show the server’s state sequence.
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Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket
LISTEN Announce willingness to accept connections; give queue size
ACCEPT Block the caller until a connection attempt arrives

CONNECT | Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Fig. 6-6. The socket primitives for TCP.
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Fig. 6-7. (a) Environment of the data link layer. (b) Environment
of the transport layer.
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Fig. 6-8. TSAPs, NSAPs, and connections.
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Fig. 6-9. How a user process in host 1 establishes a connection

with atime-of-day server in host 2.
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Fig. 6-10. (@) TPDUs may not enter the forbidden region. (b) The
resynchronization problem.
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Fig. 6-11. Three protocol scenarios for establishing a connection using a
threeeway handshake. CR and ACC denote CONNECTION REQUEST and
CONNECTION ACCEPTED, respectively. (a) Normal operation. (b) Old
duplicate CONNECTION REQUEST appearing out of nowhere. (c) Duplicate
CONNECTION REQUEST and duplicate ACK.
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Fig. 6-12. Abrupt disconnection with loss of data.
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Fig. 6-13. The two-army problem.
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Fig. 6-14. Four protocol scenarios for releasing a connection. (a)

Normal case of three-way

handshake. (b) Final ACK logt. (c)

Response lost. (d) Response lost and subsequent DRs |ost.
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Fig. 6-15. (@) Chained fixed-size buffers. (b) Chained variable-
size buffers. (c) One large circular buffer per connection.
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Message

Comments

1 < request 8 buffers> A wants 8 buffers
2 <ack = 15, buf = 4> B grants messages 0-3 only
3 <seq = 0, data = m0> A has 3 buffers left now
4 <seq =1, data = m1> A has 2 buffers left now
5 <seq = 2, data = m2> Message lost but A thinks it has 1 left
6 <ack =1, buf =3> B acknowledges 0 and 1, permits 2-4
7 <seq = 3, data = m3> A has buffer left
8 <seq = 4, data = m4> A has 0 buffers left, and must stop
9 <seq = 2, data = m2> A times out and retransmits
10 <ack = 4, buf = 0> Everything acknowledged, but A still blocked
11 <ack = 4, buf = 1> A may now send 5
12 <ack =4, buf = 2> B found a new buffer somewhere
13 <seq = 5, data = m5> A has 1 buffer left
14 <seq = 6, data = m6> A is now blocked again
15 <ack = 6, buf = 0> A is still blocked
16 <ack = 6, buf = 4> Potential deadlock

Fig. 6-16. Dynamic buffer allocation. The arrows show the direc-
tion of transmission. An €lipsis(...) indicates alost TPDU.
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Fig. 6-17. () Upward multiplexing. (b) Downward multiplexing.
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Strategy used by

Strategy used by receiving host

First ACK, then write

First write, then ACK

sending host AC(W) AWC C(AW) C(WA) W AC WC(A)
Always retransmit OK DUP OK OK DUP DuUP
Never retransmit LOST OK LOST LOST OK OK
Retransmit in SO OK DUP LOST LOST DUP OK
Retransmit in S1 LOST OK OK OK OK DUP
OK = Protocol functions correctly

DUP = Protocol generates a duplicate message
LOST = Protocol loses a message

Fig. 6-18. Different combinations of client and server strategy.
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Network packet Meaning
CALL REQUEST Sent to establish a connection
CALL ACCEPTED Response to CALL REQUEST
CLEAR REQUEST Sent to release a connection
CLEAR CONFIRMATION | Response to CLEAR REQUEST
DATA Used to transport data
CREDIT Control packet for managing the window

Fig. 6-19. The network layer packets used in our example.
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#define MAX_CONN 32 /* maximum number of simultaneous connections */
#define MAX_MSG_SIZE 8192 /* largest message in bytes */

#define MAX_PKT_SIZE 512 /* largest packet in bytes */

#define TIMEOUT 20

#define CRED 1

#define OK 0

#define ERR_FULL -1
#define ERR_REJECT -2
#define ERR_CLOSED -3
#define LOW_ERR -3

typedef int transport_address;
typedef enum {CALL_REQ,CALL_ACC,CLEAR_REQ,CLEAR_CONF,DATA_PKT,CREDIT} pkt_type;
typedef enum {IDLE,WAITING,QUEUED,ESTABLISHED,SENDING,RECEIVING,DISCONN} cstate;

/* Global variables. */

transport_address listen_address; /* local address being listened to */
int listen_conn; /* connection identifier for listen */
unsigned char data][MAX_PKT_SIZE]; /* scratch area for packet data */

struct conn {
transport_address local_address, remote_address;

cstate state; /* state of this connection */

unsigned char *user_buf_addr; [* pointer to receive buffer */

int byte_count; /* send/receive count */

int clr_req_received,; /* set when CLEAR_REQ packet received */
int timer; /* used to time out CALL_REQ packets */
int credits; /* number of messages that may be sent %/

} conn[MAX_CONN];

void sleep(void); [* prototypes */

void wakeup(void);

void to_net(int cid, int g, int m, pkt_type pt, unsigned char *p, int bytes);

void from_net(int xcid, int *q, int *m, pkt_type *pt, unsigned char *p, int *bytes);

int listen(transport_address t)
{ I* User wants to listen for a connection. See if CALL_REQ has already arrived. */
inti=1, found = 0;

for (i = 1; i <= MAX_CONN; i++) /% search the table for CALL_REQ */
if (conn[i].state == QUEUED && connli].local_address ==1) {



found =i;
break;

}

if (found == 0) {
/* No CALL_REQ is waiting. Go to sleep until arrival or timeout. */

listen_address =t; sleep(); i = listen_conn;
}
connli].state = ESTABLISHED; /* connection is ESTABLISHED */
conn[i].timer = 0; [* timer is not used */
listen_conn = 0; /* 0 is assumed to be an invalid address */
to_net(i, 0, 0, CALL_ACC, data, 0); /* tell net to accept connection */
return(i); [* return connection identifier */

}

int connect(transport_address |, transport_address r)

{ I* User wants to connect to a remote process; send CALL_REQ packet. */
int i;
struct conn xcptr;

data[0] =r; data[l] = |, /* CALL_REQ packet needs these */
i = MAX_CONN; /* search table backward */
while (conn[i].state != IDLE &&i>1)i=i-1,

if (conn[i].state == IDLE) {
/* Make a table entry that CALL_REQ has been sent. */
cptr = &conn(i];
cptr->local_address = I; cptr->remote_address =r;
cptr->state = WAITING; cptr->clr_req_received = 0;
cptr->credits = 0; cptr->timer = 0;
to_net(i, 0, 0, CALL_REQ, data, 2);
sleep(); /* wait for CALL_ACC or CLEAR_REQ */
if (cptr->state == ESTABLISHED) return(i);
if (cptr->clr_req_received) {
/* Other side refused call. */
cptr->state = IDLE; /* back to IDLE state */
to_net(i, 0, 0, CLEAR_CONF, data, 0);
return(ERR_REJECT);

}
} else return(ERR_FULL); /* reject CONNECT: no table space */

}

int send(int cid, unsigned char bufptr[], int bytes)



{ I User wants to send a message. */
int i, count, m;
struct conn *cptr = &conn|cid];

/* Enter SENDING state. */
cptr->state = SENDING;
cptr->byte_count = 0; [* # bytes sent so far this message */
if (cptr->clr_reg_received == 0 && cptr->credits == 0) sleep();
if (cptr->clr_req_received == 0) {
/* Credit available; split message into packets if need be. */
do{
if (bytes - cptr->byte_count > MAX_PKT_SIZE) {/* multipacket message */
count = MAX_PKT_SIZE; m = 1;/* more packets later */
} else { /* single packet message */
count = bytes — cptr->byte_count; m = 0;/* last pkt of this message */
}

for (i = 0; i < count; i++) data][i] = bufptr[cptr->byte_count + i;

to_net(cid, 0, m, DATA_PKT, data, count);/* send 1 packet /

cptr->byte_count = cptr->byte_count + count;/* increment bytes sent so far */
} while (cptr->byte_count < bytes); /* loop until whole message sent */

cptr->credits——; /* each message uses up one credit */
cptr->state = ESTABLISHED;
return(OK);
}else {
cptr->state = ESTABLISHED;
return(ERR_CLOSED); /* send failed: peer wants to disconnect */

}
}

int receive(int cid, unsigned char bufptr[], int xbytes)
{ I= User is prepared to receive a message. */
struct conn *cptr = &conn[cid];

if (cptr->clr_req_received == 0) {
/* Connection still established; try to receive. */
cptr->state = RECEIVING;
cptr->user_buf_addr = bufptr;
cptr->byte_count = 0;
data]0] = CRED;
data[1] = 1;
to_net(cid, 1, 0, CREDIT, data, 2); /* send credit */
sleep(); [* block awaiting data */



*xbytes = cptr->byte_count;
}
cptr->state = ESTABLISHED;
return(cptr->clr_req_received ? ERR_CLOSED : OK);

}

int disconnect(int cid)
{ I* User wants to release a connection. */
struct conn *cptr = &conn|cid];

if (cptr->clr_req_received) { /* other side initiated termination */
cptr->state = IDLE; [* connection is now released */
to_net(cid, 0, 0, CLEAR_CONF, data, 0);

}else { /* we initiated termination */
cptr->state = DISCONN,; /* not released until other side agrees */
to_net(cid, 0, 0, CLEAR_REQ), data, 0);

}

return(OK);

}

void packet_arrival(void)
{ I= A packet has arrived, get and process it. */
int cid; [* connection on which packet arrived */
int count, i, g, m;
pkt_type ptype; /* CALL_REQ, CALL_ACC, CLEAR_REQ, CLEAR_CONF, DATA_PKT, CREDIT */
unsigned char data[MAX_PKT_SIZE]; /* data portion of the incoming packet */
struct conn *cptr;

from_net(&cid, &q, &m, &ptype, data, &count);/* go get it */
cptr = &conn[cid];

switch (ptype) {
case CALL_REQ: [* remote user wants to establish connection */
cptr->local_address = data[0]; cptr->remote_address = data[1];
if (cptr->local_address == listen_address) {
listen_conn = cid; cptr->state = ESTABLISHED; wakeup();
} else {
cptr->state = QUEUED,; cptr->timer = TIMEOUT;
}

cptr->clr_req_received = 0; cptr->credits = 0;
break;

case CALL_ACC: /* remote user has accepted our CALL_REQ */



cptr->state = ESTABLISHED;
wakeup();
break;

case CLEAR_REQ: /* remote user wants to disconnect or reject call */
cptr->clr_req_received = 1;
if (cptr->state == DISCONN) cptr->state = IDLE;/* clear collision */
if (cptr->state == WAITING || cptr->state == RECEIVING || cptr->state == SENDING) wakeup();

break;

case CLEAR_CONF: [* remote user agrees to disconnect */
cptr->state = IDLE;
break;

case CREDIT: /* remote user is waiting for data */

cptr->credits += data[1];
if (cptr->state == SENDING) wakeup();
break;

case DATA_PKT: /* remote user has sent data */
for (i = 0; i < count; i++) cptr->user_buf_addr[cptr->byte_count + i] = data[i];
cptr->byte_count += count;
if (m == 0) wakeup();
}
}

void clock(void)
{ I* The clock has ticked, check for timeouts of queued connect requests. */
int i;
struct conn xcptr;
for (i=1; i <= MAX_CONN; i++) {
cptr = &conn(il;

if (cptr->timer > 0) { [* timer was running /
cptr->timer——;
if (cptr->timer == 0) { [* timer has now expired */

cptr->state = IDLE;
to_net(i, 0, 0, CLEAR_REQ), data, 0);

Fig. 6-20. An example transport entity.
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P4: Clear_req pending A4: Start timer A10: Set Clr_req_received flag
P5: Credit available A5: Send Clear_conf All: Record credit

A6: Send Clear_req A12: Accept message

Fig. 6-21. The example protocol as a finite state machine. Each
entry has an optional predicate, an optiona action, and the new
state. The tilde indicates that no major action is taken. An over-
bar above a predicate indicates the negation of the predicate.
Blank entries correspond to impossible or invalid events.
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Fig. 6-22. The example protocol in graphical form. Transitions
that leave the connection state unchanged have been omitted for
simplicity.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall



IP header TCP header
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Fig. 6-23.(a) Four 512-byte segments sent as separate IP
datagrams. (b) The 2048 bytes of data delivered to the application
inasingle READ call.
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Fig. 6-24. The TCP header.
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Destination address

000000O0O0

Protocol = 6 TCP segment length

Fig. 6-25. The pseudoheader included in the TCP checksum.
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Fig. 6-26. (a) TCP connection establishment in the normal case.
(b) Call collision.
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State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIMED WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

Fig. 6-27. The states used in the TCP connection management finite state machine.
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Fig. 6-28. TCP connection management finite state machine. The heavy solid line is the
normal path for a client. The heavy dashed line is the normal path for a server. The
light lines are unusual events.
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Fig. 6-29. Window management in TCP.
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Fig. 6-30. Silly window syndrome.
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Fig. 6-31. (a) A fast network feeding a low-capacity receiver. (b) A slow network feed-
ing a high-capacity receiver.
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Fig. 6-32. An example of the Internet congestion algorithm.
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Fig. 6-33. () Probability density of acknowledgement arrival times in the data link
layer. (b) Probability density of acknowledgement arrival times for TCP.
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Fig. 6-34. The UDP header.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall




Sender TCP #1 Base

N

=

Mobile
host
Router Antenna

Fig. 6-35. Splitting a TCP connection into two connections.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall



Timing

Bit rate

Mode

A B () D
Real None Real None Real None Real None
time time time time

Constant Variable Constant Variable

Connection orientated

Connectionless

Fig. 6-36. Original service classes supported by AAL (now obsolete).
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ATM Convergence sublayer (service specific part)
adaptation Convergence sublayer (common part)

layer Segmentation reassembly sublayer

Discussed
¢ in chapter 6

AN

Discussed

ATM layer ¢ in chapter 5

J \

Discussed

Physical layer in chapter 3

Fig. 6-37. The ATM model showing the ATM adaptation layer and its sublayers.
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by [T|A| CS A TIA A TIA CS A
ATM layer [M|R R R R R R

M M
/ ~— 4448 —» \
ATM
header :2 Unused

SAR Convergence SAR Bytes Convergence
header sublayer header trailer sublayer trailer

Fig. 6-38. The headers and trailers that can be added to a message in an ATM network.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall



Bits 1 3 3 1 .

3)

non-P | 0| SN| SNP 47-Byte payload
{f

Even parity

((

3)

P|1|SN|SNP Pointer 46-Byte payload

f

48 Bytes

Fig. 6-39. The AAL 1 cell format.
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-«—1 Byte —— -~ 2 Bytes —MmM
((
3J
SN IT 45-Byte payload LI CRC
((
1)

- 48 Bytes

Fig. 6-40. The AAL 2 cell format.
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circuit 2
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Virtual
circuit 2

sessions

é} } Three

Fig. 6-41. Multiplexing of several sessions onto one virtual circuit.
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Bytes 1

1 2 N 0-3 ! 2
) Length
CPI | Btag BAsize |Payload (1 to 655(3(5 bytes)| Padding Etag (0-65535)
n )) N
CS header CS trailer

Fig. 6-42. AAL 3/4 convergence sublayer message format.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall




Bits 2 4 10 ” 6 10
1B
$ ﬁ MID 44-Byte payload LI CRC
7 { !
00 Middle
01 End 1-44
10 Beginning

11 Single cell message

Fig. 6-43. The AAL 3/4 cell format.
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(
1)
Payload (1 to 65,535 bytes)
(
)

uu

Length

CRC

(
J

Fig. 6-44. AAL 5 convergence sublayer message format.
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ltem AAL 1 | AAL 2 AAL 3/4 AAL 5
Service class A B C/D C/D
Multiplexing No No Yes No
Message delimiting None None Btag/Etag Bit in PTI
Advance buffer allocation No No Yes No
User bytes available 0 0 0 1
CS padding 0 0 32-Bit word | 0-47 bytes
CS protocol overhead (bytes)| 0 0 8 8
CS checksum None None None 32 Bits
SAR payload bytes 46-47 | 45 44 48
SAR protocol overhead (bytes) 1-2 3 4 0
SAR checksum None None 10 Bits None

Fig. 6-45. Some differences between the various AAL protocols.
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Fig. 6-46. The state of transmitting one megabit from San Diego to Boston. (a)
Att=0. (b) After 500 psec. (c) After 20 msec. (d) After 40 msec.
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Fig. 6-47. Response as a function of load.
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User process running at the Network Receiving

time of the packet arrival manager process
\\ X 4
4 4

User space

Kernel space

Fig. 6-48. Four context switches to handle one packet with a user-space network

manager.
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process TPDU passed to the receiving process

~— Trap into the kernel to send TPDU |:|<g>—\:
L= = F—

@ o —

Em_»m—. | 31—

(? Sending Receiving process \@

Network

Fig. 6-49. The fast path from sender to receiver is shown with a heavy line. The
processing steps on this path are shaded.
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Source port Destination port VER. | IHL TOS Total length
Sequence number Identification Fragment offset
Acknowledgement number TTL Protocol Header checksum
Len [Unused Window size Source address
Checksum Urgent pointer Destination address
@) (b)

Fig. 6-50. (a) TCP header. (b) IP header. In both cases, the shaded fields are
taken from the prototype without change.
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Slot

0 —+— Pointer to list of timers for T + 12
1 0
2 0
3 0
4 0 <— Currenttime, T
5 0
6 0
7 —+— Pointer to list of timers for T + 3
8 0
9 0
10 0
11 0
12 0
13 0
14 —1— Pointer to list of timers for T + 10
15 0

Fig. 6-51. A timing whesel.
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Fig. 6-52. Time to transfer and acknowledge a 1-megabit file over a 4000-km
line.
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