We define joint and conditional pdfs in terms of corresponding
cdfs. The
joint pad is defined to be
fxy=∂2∂x∂yFxy
f
x
y
x
y
F
x
y
(6)
and the
conditional pdf is defined to be
fx|y=∂∂xF′x|Y=y
f
|
x
y
x
F
|
x
Y
y
(7)
where
F′x|Y=y=PrX≤x|Y=y
F
|
x
Y
y
Y
y
X
x
Note that
F′x|Y=y
F
|
x
Y
y
is different from the conditional cdf
Fx|Y=y
F
|
x
Y
y
, previously defined, but there is a slight
problem. The event,
Y=y
Y
y
, has zero probability for continuous random
variables, hence probability conditional on
Y=y
Y
y
is not directly defined and
F′x|Y=y
F
|
x
Y
y
cannot be found by direct application of event-based
probability. However all is OK if we consider it as a limiting
case:
F′x|Y=y=limδy→0PrX≤x|y<Y≤y+δy=limδy→0Fxy+δy-FxyFYy+δy-FYy=∂∂yFxyfYy
F
|
x
Y
y
δ
y
0
y
Y
y
δ
y
X
x
δ
y
0
F
x
y
δ
y
F
x
y
FY
y
δ
y
FY
y
y
F
x
y
fY
y
(8)
Joint and conditional pdfs have similar properties and
interpretation to ordinary pdfs:
fxy>0
f
x
y
0
∫∫fxydxdy=1
y
x
f
x
y
1
fx|y>0
f
|
x
y
0
∫fx|ydx=1
x
f
|
x
y
1
Note:
From now on interpret
∫∫ as
∫
-
∞
∞
∫
-
∞
∞
unless otherwise stated.
For pdfs we get the following rules:
-
Conditional pdf:
fx|y=fxyfy
f
|
x
y
f
x
y
f
y
(9)
-
Bayes Rule (pdf):
fx|y=fy|xfxfy
f
|
x
y
f
|
y
x
f
x
f
y
(10)
-
Total Probability (pdf):
∫fy|xfxdx=∫fyxdx=fy∫fx|ydx=fy
x
f
|
y
x
f
x
x
f
y
x
f
y
x
f
|
x
y
f
y
(11)
The final result is often referred to as the
Marginalisation Integral and
fy
f
y
as the Marginal Probability.